КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ ФОРЕКС

Лучшие Форекс брокеры 2021:
Читайте в этой статье:

Коэффициент корреляции

Корреляция это статистическая зависимость двух и более независимых друг от друга величин (величины, являющиеся таковыми хотя бы в некоторой степени). При этом изменение значения одной из них приводит к изменению значения других. В качестве математической меры корреляции двух величин служит коэффициент корреляции.

В том случае, когда изменение одной из величин не приводит к закономерному изменению другой величины, то можно говорить об отсутствии корреляции между этими величинами. В научном обороте о корреляции впервые стал говорить француз Жорж Кювье в 18 веке. Разработанный им «закон корреляции» предназначался для восстановления облика животного, имея лишь его часть.

Коэффициенты корреляции могут быть положительными и отрицательными. Если при увеличении значения одной величины происходит уменьшение значений другой величины, то их коэффициент корреляции отрицательный. В случае, когда увеличение значений первого объекта наблюдения приводит к увеличениям значения второго объекта, то можно говорить о положительном коэффициенте. Возможна еще одна ситуация отсутствия статистической взаимосвязи — например, для независимых случайных величин.

Коэффициент корреляции [К] демонстрирует нам, насколько ярко выражена тенденция роста одной переменной при увеличении другой. Его значения всегда находятся внутри диапазона [-1:1]. Чем ближе значение переменной к -1 или 1, тем значительнее коррелируют между собой исследуемые величины. При К=0 можно говорить о полном отсутствии корреляции между наблюдаемыми величинами. Если К=-1 или К=1, то говорят уже о функциональной зависимости величин.

Коэффициент корреляции на Форекс

Для каждого трейдера важно понимать, что мы работаем с торговыми инструментами, состоящими из пары валют. В отличие от фондового рынка, где, как правило, каждый торговый инструмент это всего лишь одна индивидуальная единица, на Форекс используется измерение стоимости одной валюты в единицах другой.

При этом мы не редко можем наблюдать визуальную схожесть в движении нескольких валютных пар. Это может быть связано с тем, что обе пары могут содержать одну и ту же валюту в обоих случаях. Например, можно говорить о корреляции валютных пар EUR/USD и USD/CHF с отрицательным значением К.

Рейтинг Форекс брокеров:

В качестве примера корреляции двух пар с положительным К, можно вспомнить о EUR/USD и EUR/JPY. В обоих случаях мы покупаем EUR и продаем вторую валюту. Некоторые пары движутся относительно друг друга, но со временем К может меняться. Например, чтобы определить для своей работы две коррелирующие между собой валютные пары, достаточно найти такую из всего ассортимента, предоставляемого ДЦ, которая бы имела очень низкую волатильность.

В 2022 году в качестве такого инструмента вполне могла бы выступать EUR/CHF. Не каждый день ширина ее движения на рынке превышала бы 30 пунктов, что можно считать малой величиной, относительно аналогичных показателей других пар.

Данную валютную пару можно без труда разложить на две пары, используя для этого ту валюту, которая “разбавит” выбранный нами инструмент. Для этого мы берем USD, который позволит представить нам EUR/CHF, как EUR/USD*USD/CHF.

Действительно, если перемножить две новых долларовых пары, то в результате мы вновь получаем исследуемую нами EUR/CHF. Данное преобразование говорит о том, что обе пары будут коррелировать между собой, так как их произведение будет демонстрировать значения пары EUR/CHF, а они относительно малы, о чем говорили в самом начале примера.

Для уверенной торговли необходимо иметь четкое представление не только об особенностях отдельных инструментов торговли, но и об их взаимодействии друг с другом. Существуют целые торговые стратегии, построенные с использованием К. Могут применяться даже наложения одного ценового графика на другой, для выявления аналогий в движениях цены. Коэффициент может периодически рассчитываться заново, учитывая последние изменения в поведении ценовых графиков.

Свойства коэффициента корреляции

Обозначения ξ и η являются случайными величинами

Рейтинг Форекс платформ:

Применение корреляции на Форекс

Одним из способов использования корреляции пар в торговле является устранение расхождения инструментов. Например, трейдер выбрал для своей работы две валютные пары, которые коррелируют с К = 0.8. В этом случае, при наблюдении за движением подопытных, человек заметит, что К время от времени меняется, то несколько увеличиваясь, то несколько уменьшаясь. Тем не менее, средние значения коэффициента все равно находятся в диапазоне 0.7<К<0.8.

Как только на рынке наступит ситуация, что К<0.4, например, то это будет означать наличие лишь частичного соответствия в движении обоих инструментов. То есть, при росте одной пары рост другой окажется весьма ограничен. Но, помня о том, что в целом эти инструменты коррелируют с К=0.7 или 0.8, мы можем использовать данный разрыв себе на пользу, открыв позиции в сторону сближения пар.

Нахождение подобных ситуаций и дальнейшее их использование затрудняется непостоянностью значения К. Мы можем не верно толковать новые значения коэффициента, принимая из за ожидаемый нами разрыв, но позже может оказаться, что это новое значение данного коэффициента, которое теперь станет постоянным на определенное время. Существуют специальные корреляционные индикаторы, помогающие трейдерам наблюдать за схождением и расхождением инструментов, а другими словами, за изменениями текущих значений К.

Сложно переоценить значимость коэффициента корреляции в рыночной торговле. Его использование позволяет смотреть на трейдинг более глобально, учитывая движения пар, относительно друг друга. Еще одной областью применения коэффициента стало хеджирование. Желая снизить риски в своей торговле, спекулянты могут проводить хеджирование не только на разных рынках, но и с помощью коррелирующих инструментов. Таким образом, происходит частичное хеджирование.

Корреляция на Форекс

Корреляция – это статистическая взаимосвязь двух и более случайных величин. Обычно, в трейдинге, коэффициент корреляции изменяется от -1 до 1, иногда можно встретить интерпретацию от -100 до 100.

Значение коэффициента корреляции -1 означает, что между двумя случайными величинами существует обратная стопроцентная зависимость. Значение «1» говорит о прямой зависимости.

Зачем эта информация нужна Форекс трейдерам? Здесь все просто.

Коэффициент корреляции может указать трейдеру на характер зависимости двух финансовых инструментов, будь то валютные пары, акции компаний или сырьевые товары.

Приведем простой пример. Вы наверняка замечали, что движения некоторых валютных пар практически совпадают.

Так, при публикации положительных новостей из еврозоны, валютные пары с евро (EURUSD, EURJPY, EURCAD и др.) устремляются вверх.

Но если посмотреть внимательно, то на эту новость фунт стерлингов и швейцарский франк также часто реагируют собственным ростом. С фундаментальной точки зрения это легко объяснить: экономика Великобритании и экономика Швейцарии тесно связаны с экономикой еврозоны, поэтому положительные новости из зоны евро обычно ведут к росту экономки стран – основных торговых партнеров и их валют.

Калькулятор корреляции валютных пар Forex

Для автоматического расчета корреляции валют на Форекс, вы можете воспользоваться специальным калькулятором.

Необходимо лишь выбрать валютную пару, временной интервал и их количество, по которым нужно рассчитать корреляцию. Заметим, что чем больший расчетный период выбран, тем более адекватные данные получит трейдер.

Давайте попробуем определить корреляцию валют с использованием упомянутого выше калькулятора.

Для этого выберем валютную пару EURUSD, 1 час как временной интервал и 300 периодов (максимально возможное значение) и нажмем кнопку «Рассчитать».

В результате расчета калькулятора валютных пар Форекс мы получим примерно такую таблицу (мы ее немного обработали для удобства):

На основании данных из таблицы можно сделать вывод, что валютная пара EUR/USD сильнее всего коррелирует с валютной парой USD/DKK. Их движение совпадает на 100%. Однако зависимость между этими валютными парами обратная, о чем свидетельствует знак «-» перед значением коэффициента корреляции.

Валютная пара USDCHF также сильно обратно-коррелирует с EUR/USD (коэффициенты корреляции -0.91).

Наибольший коэффициент прямой зависимости с парой евро/доллар имеют валютные пары NZD/USD и EUR/AUD (0.83 и 0.51 соответственно). Это говорит о том, что движения EUR/USD и вышеуказанных пар совпадают в 83% и 51% случаев. В данном случае зависимость (корреляция) прямая.

Для того чтобы определить, насколько зависимыми являются две валютные пары, часто расчет корреляции можно и не проводить. Достаточно лишь расположить графики двух валютных пар рядом (как на картинке выше) – наличие корреляции становится очевидным.

На картинке выше мы можем видеть пример обратной (зеркальной) корреляции валютных пар EURUSD и USDDKK.

Как использовать корреляцию

Существуют различные стратегии на основе корреляции валютных пар Форекс, например, ее применяют для улучшения четкости паттернов:

В этом материале мы укажем лишь основные направления применения корреляции, а о самих стратегиях вы можете почитать здесь.

Трейдеры могут использовать корреляцию валют в нескольких целях:

1. Хеджирование. Допустим, что трейдер продал валютную пару EURUSD среднесрочно и решил ждать, когда позиция закроется по тейк профиту. Однако неожиданно становится известно, что сегодня днем запланировано выступление президента Европейского центрального банка Марио Драги.

Такие выступления официальных лиц часто приводят к неожиданным и резким движениям на валютном рынке. Ознакомившись с корреляцией Форекс валютных пар, трейдер определил, что между парами EUR/USD и USD/CHF существует твердая обратная зависимость. Совершенно логично в данной ситуации для трейдера продать валютную пару USD/CHF с целью хеджирования открытой позиции по EUR/USD в случае неожиданного отскока последней пары вверх.

2. Диверсификация рисков. Предположим, что трейдер решил купить валютную пару AUD/USD. Видя, что у него еще достаточно средств для открытия других позиций, трейдер решил поискать возможность совершить еще две сделки. Ознакомившись с коэффициентами корреляции валют, он выяснил, что AUD/USD сильнее всего коррелирует с EUR/AUD и NZD/USD, а слабее всего с USD/RUB и GBP/JPY. Самым разумным решением в данной ситуации будет работа с валютными парами USD/RUB и GBP/JPY, т.к. в случае непредвиденного падения AUD/USD, с точки зрения теории вероятности, это событие не должно затронуть вышеупомянутые валютные пары.

Пользуясь корреляцией как торговым индикатором, необходимо помнить, что валютный рынок находится в постоянном движение, поэтому корреляция валют также может изменяться со временем. Поэтому мы советуем время от времени опытным трейдерам не забывать обновлять свою корреляционную таблицу.

Корреляция форекс.

Давно замечено, что движение курсов валют на форекс по различным парам может быть взаимосвязано, эту взаимосвязь именуют корреляцией.

Корреляция форекс – подразумевает устойчивую взаимосвязь между курсами различных валют на форекс. На практике обычно используют корреляцию валютных пар, что позволяет значительно упростить процесс трейдинга.

Стратегия является довольно распространенной и успела завоевать доверие не одного поколения трейдеров на различных мировых биржах.

Торгуя на валютном рынке вы, наверное, не раз замечали, что стоит одной валюте пойти вверх следом за ней подтягиваются и другие, или наоборот, как только инструмент торговли начинает дешеветь, некоторые другие денежные единицы только укрепляют свое положения. Причем, каждая из валют имеет свою скорость движения, что позволяет, ориентируясь по одной денежной единице совершить прогноз движения тренда по другой.

При этом следует отметить, что валюты или валютные пары не обязательно будет двигаться только в одном направлении, корреляция на форекс может носить как прямой, так и обратный характер. В случае если инструмент торговли и выбранный ориентир движутся в одном направлении, говорят, что наблюдается прямая взаимосвязь. Если же курсы движутся в обратном направлении, то речь обычно идет об обратной корреляции.

Коэффициент корреляции валют форекс.

Для того, что бы организовать интернет трейдинг на нескольких валютных парах принято использовать такое понятие как коэффициент корреляции. Он позволяет установить, как тесно связаны валютные пары между собой.

Если цена на валюту в течение всего времени движется в одном направлении, то инструментам форекс присваивается значение коэффициента +1, что соответствует 100%. Но это вовсе не значит, что при подорожании EURUSD на 10 пунктов и EURGBP так же подорожает соответственно на 10 пунктов, если между ними наблюдается 100% корреляция. Коэффициент характеризует не величину изменений, а количество времени, на протяжении которого наблюдается корреляция.

В то же время знак плюс или минус свидетельствует о том, какой из видов взаимодействия присутствует, прямой или обратный. Плюс говорит о том, что пары движутся в одну сторону, а минус соответственно в обратную.

Пример корреляции валютных пар приведен в таблице, первая табличка для часового графика, вторая дневного.

Корреляция валютных пар — практическое применение.

Существует два варианта использование коэффициента корреляции, в первом случае он применяется при мультивалютной торговле. Зная что, определенные два инструмента основное время движутся в разных направлениях, нет смысла открывать по ним сделки в одну сторону. Разве, что подобный подход может использоваться для хеджирования на форекс.

Когда корреляция позволяет снизить риски, часто для этих целей используются активы которые совершенно по разному реагируют на выход новости или событие.

На втором варианте построена целая стратегия, суть ее заключается в том, что одна валютная пара обычно реагирует на событие немного быстрее, чем другая. А значит, ориентируясь по первой, можно открывать сделки по второй.

При использовании корреляции желательно не забывать про вспомогательные инструменты, в качестве которых выступают индикаторы или другие подобные скрипты. Вот примеры некоторых из них:

Корреляция на рынке Forex: советы по применению

Замечали ли вы когда-нибудь, что некоторые валютные пары движутся в одинаковых направлениях? Например, пара NZD/USD в большинстве случаев повторяет траекторию движения пары AUD/USD. Это явление называется «корреляция».

Итак, валютная корреляция – мера взаимной зависимости двух валютных пар. Коэффициент корреляции представляется в десятичном формате и варьируется в диапазоне от +1.0 до -1.0.

  • Корреляция +1 (положительная, прямая) означает, что две валютные пары 100% времени движутся в одном направлении.
  • Корреляция -1 (отрицательная, обратная), наоборот, означает, что две пары 100% времени движутся в противоположных направлениях.
  • Нулевая корреляция означает, что две пары никак не зависят друг от друга.

Наиболее яркими примерами пар, имеющих прямую корреляцию, являются EUR/USD и GBP/USD, AUD/USD и NZD/USD, USD/CHF и USD/JPY.

Прямая корреляция на форекс

Хорошими примерами обратно коррелирующих пар могут послужить EUR/USD и USD/CHF, GBP/USD и USD/JPY, USD/CAD и AUD/USD, USD/JPY и AUD/USD.

Обратная корреляция на форекс

Как применять валютную корреляцию в торговле?

Понимание валютных корреляций позволит Вам избежать опасных ошибок в принятии торговых решений. Особенно высоко значение корреляции в среднесрочной и долгосрочной торговле.

Например, нужно понимать, что однонаправленные позиции по положительно коррелирующим парам увеличивают величину потенциальных убытков. Например, мы знаем, что пары EUR/USD и GBP/USD традиционно имеют сильную прямую корреляцию. Это означает, что одновременная покупка EUR/USD и GBP/USD, фактически, удваивает ваш риск. Если ваши ожидания не оправдались и евро дешевеет против доллара США, фунт, скорее всего, последует вниз за евро.

Аналогичная ситуация возникает при открытии разнонаправленных позиций по двум парам с обратной корреляцией (например, одновременная покупка EUR/USD и продажа USD/CHF).

Кроме того, одновременная разнонаправленная торговля по двум коррелирующим парам не имеет большого смысла — у вас фактически отсутствует позиция. Например, покупка EUR/USD и продажа GBP/USD в одно и то же время контрпродуктивна. Любое движение рынка повышает вашу прибыль по одной паре, но понижает – по другой. В итоге, вы можете закрыться в убытке из-за разницы в пипсовых стоимостях. То же самое относится к однонаправленным позициям по обратнокоррелирующим парам (например, одновременная покупка EUR/USD и USD/CHF).

Торговый совет

Давайте представим, что пара EUR/USD тестирует важный уровень сопротивления. Перед покупкой евро на пробое мы бы рекомендовали посмотреть, как в это время ведут себя другие долларовые пары. Если доллар слабеет против большинства основных валют, можно предположить, что текущий пробой по EUR – не ложный.

Корреляция валют и цен на сырье

Валютный рынок тесно взаимодействует с другими финансовыми рынками. Если вы торгуете валютами стран-экспортеров сырья, внимательно изучите факторы, влияющие на цену «профильного» ресурса этой страны и постарайтесь составить по нему свои прогнозы.

Рассмотрим пример австралийского доллара (AUD). Ключевыми статьями австралийского экспорта являются железная руда, молочная продукция и золото, поэтому состояние экономики и курс национальной валюты напрямую зависят от рыночных цен на эти товары. Австралийский доллар укрепляется, когда растут цены на эти товары, и наоборот, снижается, когда цены падают.

Как видно из графиков, между ценой на золото и парой AUD/USD действительно присутствует долгосрочная положительная корреляция. Однако в краткосрочных периодах корреляция может снижаться. Например, резкая распродажа на американском рынке акций, как правильно, ослабляет привязку курса AUD/USD к золоту.

Пример корреляции между золотом и AUDUSD

Другой хороший пример корреляции валют с сырьевыми ресурсами – канадский доллар (CAD) и нефть. Канада — крупнейший поставщик нефти в США, поэтому при росте мировых цен на нефть стоит задуматься о долгосрочных покупках канадца.

Корреляция курса валют и рынка акций

Корреляция USD и S&P 500

Рост фондового рынка, как правило, сопровождается укреплением национальной валюты, однако есть и частные случаи. Например, корреляция между S&P500 и долларом США (USD) не является постоянной. С одной стороны, дешевый доллар является позитивным фактором для американского рынка акций: конкурентоспособность американских товаров на мировых рынках возрастает, что приводит к росту прибыли компаний и, соответственно, их акций. Вот почему запуск программы количественного смягчения (QE) в США поднял фондовые индексы на рекордные высоты. Однако помимо валютного курса на динамику американских акций влияет множество других, локальных и глобальных факторов. Курс доллара и фондовые индексы США, как правило, являются отражением глубинных экономических процессов.

В декабре 2022 г. американский Федрезерв анонсировал постепенный выход из программы QE, а также возможное повышение ставок в начале 2022 г. Существуют опасения, что ужесточение монетарной политики ФРС может вызвать обвал на рынке акций, так как сократится объем дешевой ликвидности на рынке. Между тем, доллар США может укрепиться. Несмотря на это, многие экономисты не склонны рассматривать сворачивание QE и повышение ставок как однозначно негативный фактор. Сокращение объемов монетарного стимулирования сигнализирует о выходе крупнейшей экономики мира их кризиса, а значит, является позитивным сигналом для рынков капитала. Кроме того, власти США сворачивают QE постепенно, принимая решения на основе динамики экономических индикаторов. Существует высокая вероятность, что в ближайшие месяцы сохранится слабая позитивная корреляция курса доллара и фондовых индексов.

Корреляция USD и S&P 500

Корреляция JPY и Nikkei 225

Японская иена и фондовый индекс Nikkei 225 – другой любопытный пример меняющейся корреляции. До 2005 года иена и Nikkei сохраняли позитивную корреляцию, однако затем она изменилась на негативную. Этот парадокс объясняется тем, что в 2005-2007 гг. в Японии были исключительно низкие процентные ставки, что сделало иену основной валютой фондирования в операциях «carry trade» (заимствование средств в валюте государства установившего низкие процентные ставки, конвертация и инвестирование их в валюте государств, установивших высокие процентные ставки). Иена снижалась на фоне обилия подобных операций (т.е. пара USD/JPY укреплялась). Дешевая национальная валюта была выгодна японским экспортерам – в результате, индекс Nikkei тоже рос.

Такая ситуация сохранялась вплоть до начала мирового экономического кризиса в 2008 г. В это напряженное время инвесторы принялись избавляться от рисковых активов, а покупали «надежную» иену. В результате, JPY выросла, что негативно отразилось на прибылях японских экспортеров и, соответственно, на индексе Nikkei.

В 2022 году Банк Японии избрал стратегию активной борьбы с дефляцией, в основе которой лежит снижение стоимости национальной валюты. Резкое падение иены привело к подъему на японских фондовых площадках. Таким образом, мы видим, что обратная зависимость между иеной и Nikkei сохраняется и сегодня.

Коэффициент корреляции: что нужно знать, формула, пример расчёта в Excel

Приветствую всех читателей моего блога! Давненько я не писал статей по основам инвестирования. Сегодня хочу рассказать вам таком понятии как корреляция, которая имеет отношение к созданию качественного инвестиционного портфеля и диверсификации ваших вложений.

Если говорить о том, что такое корреляция простыми словами, то это по сути связь между двумя явлениями, выраженными в числовой форме. Например, проанализировав данные по ВВП на душу населения и продолжительности жизни в странах мира, мы невооруженным глазом заметим тенденцию:

А благодаря расчёту коэффициента корреляции мы можем узнать силу взаимосвязи в конкретном числовом выражении. Это очень удобно и полезно при анализе данных в самых разных областях науки, в том числе в экономике и инвестировании.

Сегодня я расскажу вам подробнее о том, что такое корреляция простыми словами, без сложных формул и терминов. Также я покажу вам, как правильно и легко рассчитать коэффициент корреляции в Excel и как правильно интерпретировать результаты, чтобы использовать их для составления инвестиционного портфеля.

А чтобы не пропускать следующие статьи блога, подписывайтесь на мой Телеграм-канал! Там же я выкладываю отчёты по инвестициям, сообщаю об обновлениях в моем инвест-портфеле и иногда пишу заметки на интересные темы. Даже чатик инвесторов у нас есть, присоединяйтесь 🙂

Прежде, чем перейти дальше, небольшая рекламная вставка:

Хочу порекомендовать вам сервис учёта инвестиций от партнёра Блога Вебинвестора — компании Intelinvest. На нём вы можете следить за своим портфелем через сайт или мобильное приложение, при этом предоставлять пароли для импорта сделок не нужно. Можно вести учёт любых активов: акций, облигаций, криптовалют, драгметаллов, форекс-инвестиций и т.д. Для пробы есть функциональная бесплатная версия. Если вы захотите сделать полноценную подписку, используйте промокод 1VYV9CMSTD, чтобы получить скидку 20% на первую оплату.

Спасибо за внимание, продолжаем!

Что такое корреляция простыми словами

Не хочу вас сразу грузить формулами и расчётами, об этом поговорим ближе к концу. Давайте сначала разберемся, что по своей сути означает цифра коэффициента корреляции, которую вы можете встретить в какой-нибудь книге или статье.

Значение коэффициента может меняться от -1 до +1:

Если значение близко к единице или минус единице — значит два явления так или иначе сильно взаимосвязаны. Впрочем, причины этого не всегда очевидны — явление А может влиять на явление B, может быть наоборот. Нередко бывает, что существует явление C, которое приводит в движение А и В одновременно. В общем, природа корреляции — это уже второй вопрос, которым должны заниматься исследователи.

Околонулевые значения, в свою очередь, говорят об отсутствии какой-либо зависимости между явлениями. Нет конкретного предела, где заканчивается случайность и начинается взаимосвязь, все зависит от предмета исследования и количества данных. Навскидку, обычно при значениях от -0.3 до 0.3 можно говорить о том, что зависимость отсутствует.

При высокой положительной корреляции вслед за графиком А растёт и график B, и чем выше значение, тем слаженнее оба движутся. Для наглядности, вот как выглядит корреляция +1:

Движения графиков полностью повторяют друг друга, причем это как в случае простого добавления, так и с множителем.

При сильной отрицательной корреляции рост графика А приводит к падению графика B и наоборот. Вот так выглядит корреляция -1:

Движения графиков похожи на зеркальные отражения.

Коэффициент корреляции — удобный инструмент для анализа во многих сферах науки и жизни. Его легко рассчитать в Excel и применить, поэтому самая большая сложность в работе с ним — грамотно подобрать данные для расчёта. Основное правило — чем больше данных, тем лучше. Многие взаимосвязи проявляют себя лишь на длинной дистанции.

Также нужно следить за тем, чтобы найденные корреляции не были ложными.

Ложные корреляции

Дело в том, что с помощью коэффициента корреляции можно проверить на взаимосвязь любые явления, которые можно выразить в числовом выражении. То есть, реально любые — например количество свадеб в Нью-Йорке и объем импорта нефти в США из Норвегии:

Корреляция составила 86%! Действительно ли свадьбы влияют на экспорт нефти? Разумеется, нет — подобная зависимость совершенно случайна. Именно так выглядит ловушка ложной корреляции — она может показать взаимосвязь там, где её на самом деле нет.

Не хочу сильно заострять внимание на этой проблеме, так что если интересно поразбираться — нашел для вас видео, в котором найдете еще несколько примеров странных взаимосвязей и причины их появления:

В общем, на результаты корреляционного анализа есть смысл обращать внимание, когда связь между явлениями уже известна или подозревается. В противном случае это может быть всего лишь число, которое ничего не значит.

Корреляция и диверсификация

Как знания о корреляции активов могут помочь лучше вкладывать деньги? Думаю, вы все хорошо знакомы с золотым правилом инвестора — не клади все яйца в одну корзину. Речь, естественно, идёт о диверсификации инвестиционных активов в портфеле. Корреляция и диверсификация неразрывно связаны, что понятно даже из названия — английское diversify означает «разнообразить», а как коэффициент корреляции как раз показывает схожесть или различие двух явлений.

Другими словами, инвестировать в финансовые инструменты с высокой корреляцией не очень хорошо. Почему? Все просто — похожие активы плохо диверсифицируются. Вот пример портфеля двух активов с корреляцией +1:

Как видите, график портфеля во всех деталях повторяет графики каждого из активов — рост и падение обоих активов синхронны. Диверсификация в теории должна снижать инвестиционные риски за счёт того, что убытки одного актива перекрываются за счёт прибыли другого, но здесь этого не происходит совершенно. Все показатели просто усредняются:

Портфель даёт небольшой выигрыш в снижении рисков — но только по сравнению с более доходным Активом 1. А так, никаких преимуществ по сути нет, нам лучше просто вложить все деньги в Актив 1 и не париться.

А вот пример портфеля двух активов с корреляцией близкой к 0:

Где-то графики следуют друг за другом, где-то в противоположных направлениях, какой-либо однозначной связи не наблюдается. И вот здесь диверсификация уже работает:

Мы видим заметное снижение СКО, а значит портфель будет менее волатильным и более стабильно расти. Также видим небольшое снижение максимальной просадки, особенно если сравнивать с Активом 1. Инвестиционные инструменты без корреляции достаточно часто встречаются и из них имеет смысл составлять портфель.

Впрочем, это не предел. Наиболее эффективный инвестиционный портфель можно получить, используя активы с корреляцией -1:

Уже знакомое вам «зеркало» позволяет довести показатели риска портфеля до минимальных:

Несмотря на то, что каждый из активов обладает определенным риском, портфель получился фактически безрисковым. Какая-то магия, не правда ли? Очень жаль, но на практике такого не бывает, иначе инвестирование было бы слишком лёгким занятием.

Коэффициент корреляции и ПАММ-счета

С расчётом корреляции я как студент экономического ВУЗа познакомился еще на втором курсе. Тем не менее, долгое время недооценивал важность расчёта корреляции именно для подбора ПАММ-портфеля. 2022 год очень четко показал, что ПАММ-счета с похожими стратегиями в случае кризиса могут вести себя очень похоже.

Случилось так, что с середины года отказала не просто одна стратегия управляющего, а большинство торговых систем, завязанных на активные движения валютной пары EUR/USD:

Рынок был для каждого управляющего по-своему неблагоприятным, но присутствие их всех в портфеле привело к большой просадке. Совпадение? Не совсем, ведь это были ПАММ-счета с похожими элементами в торговых стратегиях. Без опыта торговли на рынке Форекс может быть сложно понять, как это работает, но по корреляционной таблице степень взаимосвязи видна и так:

Мы ранее рассматривали корреляцию вплоть до +1, но как видите на практике даже совпадение в районе 20-30% уже говорит о некоторой схожести ПАММ-счетов и, как следствие, результатов торговли.

Чтобы снизить шансы на повторение ситуации, как в 2022 году, я считаю в портфель стоит подбирать ПАММ-счета с низкой взаимной корреляцией. По сути, нам нужны уникальные стратегии с разными подходами и разными валютными парами для торговли. На практике, конечно, сложнее подобрать прибыльные счета с уникальными стратегиями, но если хорошо покопаться в рейтинге ПАММ-счетов, то все возможно. К тому же, низкая взаимная корреляция снижает требования для диверсификации, 5-6 счетов вполне хватит.

Пару слов о расчёте коэффициента корреляции для ПАММ-счетов. Достать сами данные относительно несложно, в Альпари прямо с сайта, для остальных площадок через сайт investflow.ru. Однако с ними нужно сделать небольшие преобразования.

Данные о прибыльности ПАММов изначально хранятся в формате накопленной доходности, нам это не подходит. Корреляция стандартных графиков доходности двух прибыльных ПАММ-счетов всегда будет очень высокой, просто потому что они все движутся в правый верхний угол:

У всех счетов положительная корреляция от 0.5 и выше за редким исключением, так мы ничего не поймем. Реальное сходство стратегий ПАММ-счетов можно увидеть только по дневным доходностям. Рассчитать их не особо сложно, если знаете нужные формулы доходности. Если прибыль или убыток двух ПАММ-счетов совпадают по дням и по процентам, высока вероятность что их стратегии имеют общие элементы — и коэффициент корреляции нам это покажет:

Как видите, некоторые корреляции стали нулевыми, а некоторые остались на высоком уровне. Мы теперь видим, какие ПАММ-счета действительно похожи между собой, а какие не имеют ничего общего.

Напоследок давайте разберёмся, что делать и как посчитать корреляцию, если у вас появилась в этом необходимость.

Коэффициент корреляции в Excel и формула расчёта

Вероятно, вас интересует, как самостоятельно рассчитать корреляцию двух инвестиционных активов. До изобретения компьютеров приходилось делать это вручную, для чего использовалась вот такая формула коэффициента корреляции:

  • Rxy — коэффициент корреляции;
  • COVxy — ковариация переменных X и Y;
  • σX, σY — стандартное отклонение переменных X и Y
  • X и Y с чертой — среднее значение Х и Y

Кстати, студентам на экзамене до сих пор компьютеров не выдают, хоть калькулятор можно и на том спасибо. Как вы понимаете, занятие все равно трудоёмкое 🙂

Профессиональному инвестору может понадобиться рассчитать сотни корреляций, так что вариант по формуле не подходит. Естественно, эта задача уже давно автоматизирована, и, как по мне, проще всего рассчитать коэффициент корреляции в Excel.

Чтобы далеко за примером не ходить, давайте рассчитаем корреляцию двух популярных ПАММ-счетов Lucky Pound и Hohla EUR. Они находятся на площадке компании Alpari, а значит мы можем скачать историю доходности прямо с сайта:

Далее нам надо скопировать историю доходности в один файл, для удобства. Для точного расчета корреляции в Excel нам в принципе хватит и двух лет истории, располагаем данные так:

Теперь, как я уже писал выше, для ПАММ-счетов (и для многих других инвестиционных инструментов) надо рассчитать дневные доходности:

А дальше все просто — используется встроенная формула коэффицента корреляции в Excel =КОРРЕЛ():

Получили значение 0.12, а значит стратегии ПАММ-счетов практически не имеют ничего общего. Это хорошо для диверсификации, так что можно добавлять обоих в инвестиционный портфель.

При желании, можно сделать табличку на весь ваш портфель. Тогда если у вас появится новый вариант для инвестирования, вы сможете сразу сравнить его с каждым активом и увидеть, есть ли нежелательные корреляции.

Мне понравилось работать над этой темой и статья получилась неплохой. Если вы согласны с этим, сделайте доброе дело и поделитесь ссылочкой с друзьями и коллегами 🙂

Ну а я пошел делать следующую статью. Есть еще одна интересная тема по основам инвестирования, которую я хочу подробно обсудить… Будет обидно, если пропустите, так что подписывайтесь на обновления блога по почте или через соцсети.

Корреляция (Correlation) — это

Корреляция — это статистическая взаимосвязь двух или нескольких случайных величин

Понятие корреляции, виды корреляции, коэффициент корреляции, корреляционный анализ, корреляция цен, корреляция валютных пар на Форекс

Структура публикации

Корреляция — это, определение

Корреляция — это один из основных терминов теории вероятности, показывающий меру зависимости между двумя и более случайными величинами. Данная зависимость выражается через коэффициент корреляции. Коэффициент корреляции принимает значения от -1 до +1. Чем выше значение коэффициента корреляции, тем больше зависимость между величинами. Корреляция бывает положительной и отрицательной.

Корреляция — это статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). При этом изменения значений одной или нескольких из этих величин сопутствуют систематическому изменению значений другой или других величин. Математической мерой корреляции двух случайных величин служит корреляционное отношение, либо коэффициент корреляции. В случае, если изменение одной случайной величины не ведёт к закономерному изменению другой случайной величины, но приводит к изменению другой статистической характеристики данной случайной величины, то подобная связь не считается корреляционной, хотя и является статистической.

Корреляция — это понятие, которым отмечают связь между явлениями, если одно из них входит в число причин, определяющих другие, или если имеются общие причины, воздействующие на эти явления (функция является частным случаем корреляции); кореляция может быть более или менее тесной (т.е. зависимость одной величины от другой — более или менее ясно выраженной); число, показывающее степень тесноты корреляции, называется коэффициентом корреляции (это число заключено между -1 и 1).

Корреляция — это взаимная связь явлений, находящихся в известной зависимости друг от друга. Рост безработицы и количество уголовных преступлений находятся в прямой корреляции друг к другу.

Индикатор Коэффициент Корреляции (Correlation Coefficient)

Корреляция — это степень зависимости между двумя переменными. Линейная корреляция между двумя переменными х и у определяется знаком и величиной. Между двумя переменными существует положительная корреляция, если данная сумма положительна, и отрицательная корреляция, если сумма отрицательна. Степень корреляции измеряется коэффициентом корреляции r, который меняется от +1 до –1, достигая значения +1, когда х и у полностью положительно коррелируются между собой, и –1, когда х и у полностью отрицательно коррелируются между собой; если r = 0, х и у являются независимыми переменными. r не зависит от единиц измерения х и у.

Корреляция — это вероятностная или статистическая зависимость. В отличие от функциональной зависимости корреляция возникает тогда, когда зависимость одного из признаков от другого осложняется наличием ряда случайных факторов.

Корреляция — это статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). При этом изменения одной или нескольких из этих величин приводят к систематическому изменению другой или других величин. Мерой корреляции двух случайных величин служит коэффициент корреляции.

Коэффициент корреляции — это математическая мера корреляции двух величин. Коэффициенты корреляции могут быть положительными и отрицательными. Если при увеличении значения одной величины происходит уменьшение значений другой величины, то их коэффициент корреляции отрицательный. В случае, когда увеличение значений первого объекта наблюдения приводит к увеличениям значения второго объекта, то можно говорить о положительном коэффициенте. Возможна еще одна ситуация отсутствия статистической взаимосвязи — например, для независимых случайных величин.

Коэффициент корреляции — это мера выражения тенденции роста одной переменной при увеличении другой. Его значения всегда находятся внутри диапазона -1; +1. Чем ближе значение переменной к -1 или 1, тем значительнее коррелируют между собой исследуемые величины. При К=0 можно говорить о полном отсутствии корреляции между наблюдаемыми величинами. Если К=-1 или К=1, то говорят уже о функциональной зависимости величин.

Коэффициент корреляции или парный коэффициент корреляции в теории вероятностей и статистике — это мера линейной зависимости двух случайных величин.

Коэффициент корреляции — это статистическая мера направления и степени линейной зависимости между двумя случайными переменными (меняется от -1 до +1).

Коэффициент корреляции — это величина, характеризующая направление и силу связи между признаками. Коэффициент корреляции, который одним числом дает представление о направлении и силе связи между признаками (явлениями), пределы его колебаний от 0 до + — 1.

Коэффициент корреляции — это статистический показатель, показывающий, насколько связаны между собой колебания значений двух других показателей. Например, насколько движение доходности ПИФа связано, перекликается (коррелирует) с движением индекса, выбранного для расчета коэффициента бета для этого ПИФа. Чем ближе значение коэффициента корреляции к 1, тем больше коррелируют ПИФ и индекс, а значит коэффициент бета и, следовательно, коэффициент альфа можно принимать к рассмотрению. Если значение этого коэффициента корреляции меньше 0,75, то указанные показатели бессмысленны.

Коэффициент корреляции — это величина, которая может варьировать в пределах от +1 до -1. В случае полной положительной корреляции этот коэффициент равен плюс 1, а при полной отрицательной — минус 1.

Сущность понятия корреляция

Термин «корреляция» впервые применил французский палеонтолог Ж. Кювье, который вывел «закон корреляции частей и органов животных» (этот закон позволяет восстанавливать по найденным частям тела облик всего животного). В статистику указанный термин ввел в 1886 году английский биолог и статистик Френсис Гальтон (не просто связь — relation, а «как бы связь» — co-relation). Однако точную формулу для подсчёта коэффициента корреляции разработал его ученик — математик и биолог — Карл Пирсон (1857 — 1936).

Корреляционным называется исследование, проводимое для подтверждения или опровержения гипотезы о статистической связи между несколькими (двумя и более) переменными. В психологии переменными могут выступать психические свойства, процессы, состояния и др.

«Корреляция» в прямом переводе означает «соотношение». Если изменение одной переменной сопровождается изменением другой, то можно говорить о корреляции этих переменных. Наличие корреляции двух переменных ничего не говорит о причинно-следственных зависимостях между ними, но дает возможность выдвинуть такую гипотезу. Отсутствие же корреляции позволяет отвергнуть гипотезу опричинно-следственной связи переменных. Различают несколько интерпретаций наличия корреляционной связи между двумя измерениями:

1. Прямая корреляционная связь. Уровень одной переменной непосредственно соответствует уровню другой. Примером является закон Хика: скорость переработки информации пропорциональна логарифму от числа альтернатив. Другой пример: корреляция высокой личностной пластичности и склонности к смене социальных установок.

2. Корреляция, обусловленная третьей переменной. Две переменные (а, с) связаны одна с другой через третью (в), не измеренную в ходе исследования. По правилу транзитивности, если есть R (а, b) и R (b, с), то R (а, с). Примером подобной корреляции является установленный психологами США факт связи уровня интеллекта с уровнем доходов. Если бы такое исследование проводилось в сегодняшней России, то результаты были бы иными. Очевидно, все дело в структуре общества. Скорость опознания изображения при быстром предъявлении и словарный запас испытуемых также положительно коррелируют. Скрытой переменной, обусловливающей эту корреляцию, является общий интеллект.

3. Случайная корреляция, не обусловленная никакой переменной.

4. Корреляция, обусловленная неоднородностью выборки. Представим себе, что выборка, которую мы будем обследовать, состоит из двух однородных групп. Например, мы хотим выяснить, связана ли принадлежность к полу с уровнем экстраверсии. Считаем, что «измерение» пола трудностей не вызывает, экстраверсию же измеряем с помощью опросником Айзенка ETI-1. У нас две группы: мужчины-математики и женщины-журналистки. Не удивительно, если мы получим линейную зависимость между полом и уровнем экстраверсии — интроверсии: большинство мужчин будут интровертами, большинство женщин — экстравертами.

Корреляция рассматривается как признак, указывающий на взаимосвязь ряда числовых последовательностей. Иначе говоря, корреляция характеризует силу взаимосвязи в данных. Если это касается взаимосвязи двух числовых массивов xt и у, то такую корреляцию называют парной.

При поиске корреляционной зависимости обычно выявляется вероятная связь одной измеренной величины x (для какого-то ограниченного диа-пазона ее изменения, например от x1 до xn) с другой измеренной величиной у (также изменяющейся в каком-то интервале у1 . yn). В таком случае мы будем иметь дело с двумя числовыми последовательностями, между которыми и надлежит установить наличие статистической (корреляционной) связи. На этом этапе пока не ставится задача определить, является ли одна из этих случайных величин функцией, а другая — аргументом. Отыскание количественной зависимости между ними в форме конкретного аналитического выражения — это задача уже другого анализа, регрессионного. Статистический смысл термина значимость означает, что анализируемая зависимость проявляется сильнее, чем это можно было бы ожидать от чистой случайности.

Таким образом, корреляционный анализ позволяет сделать вывод о силе взаимосвязи между парами данных х и у, а регрессионный анализ используется для прогнозирования одной переменной (у) на основании другой (х). Иными словами, в этом случае пытаются выявить причинно-следственную связь между анализируемыми совокупностями.

Строго говоря, принято различать два вида связи между числовыми совокупностями — это может быть функциональная зависимость или же статистическая (случайная). При наличии функциональной связи каждому значению воздействующего фактора (аргумента) соответствует строго определен-ная величина другого показателя (функции), т.е. изменение результативного признака всецело обусловлено действием факторного признака.

Аналитически функциональная зависимость представляется в следующем виде:

В случае статистической связи значению одного фактора соответствует какое-то приближенное значение исследуемого параметра, его точная величина является непредсказуемой, непрогнозируемой, поэтому получаемые показатели оказываются случайными величинами. Это значит, что изменение результативного признака у обусловлено влиянием факторного при-знака х лишь частично, т.к. возможно воздействие и иных факторов, вклад которых обозначен как s равно или меньше.

По своему характеру корреляционные связи — это соотносительные связи. Примером корреляционной связи показателей коммерческой деятельности является, например, зависимость сумм издержек обращения от объема товарооборота. В этой связи помимо факторного признака х (объема товарооборота) на результативный признак у (сумму издержек обращения) влияют и другие факторы, в том числе и неучтенные, порождающие вклад s.

Такая зависимость графически изображается в виде экспериментальных точек, образующих поле рассеяния, или, как принято говорить, поле корреляции. Следовательно, такие двумерные данные можно анализировать с использованием диаграммы рассеяния в координатах «х — у», которая дает визуальное представление о взаимосвязи исследуемых совокупностей.

Для количественной оценки существования связи между изучаемыми совокупностями случайных величин используется специальный статистический показатель — коэффициент корреляции r. Если предполагается, что эту связь можно описать линейным уравнением, то принято говорить о существовании линейной корреляции.

Корреляция (correlation) — это такой тип ассоциации одной переменной с другой, при котором изменение одной величины сопровождается изменением другой, то есть имеется сопутствующая вариация. Корреляция бывает положительной или отрицательной. Первая описывает ситуацию, в которой при увеличении одной переменной увеличивается и другая, а вторая — в которой переменные изменяются обратно пропорционально: одна увеличивается, а другая уменьшается.

Корреляция может измеряться статистически, коэффициентом корреляции или коэффициентом ассоциации, подобных форм существует множество. Большинство из них сосредоточено на линейной связи (изменение одной переменной прямо пропорционально изменению другой). В виде графика идеальная связь означает прямую линию, соединяющую все точки. Коэффициенты корреляции изобретены по существу как меры отклонения от этой линии. Криволинейная корреляция означает нелинейное изменение переменных — темпы изменения одной быстрее, чем у другой. При отсутствии ассоциации говорят, что переменные имеют статистическую независимость.

Методика корреляционного анализа используется главным образом для данных интервального уровня, но тесты существуют и для других уровней. Нахождение корреляции не подразумевает причинность. Между переменными иногда обнаруживаются фальшивые связи, поэтому нужны другие доказательства для обоснования вывода о влиянии одной переменной на другую. Нужно также помнить, что кажущаяся ассоциация способна вызываться третьим фактором, систематически воздействующим на обе переменные. Если задействованы три или более переменных, применяются методы многомерного анализа.

Корреляция и взаимосвязь величин

Качество корреляционной зависимости обратно пропорционально плотности точек (Один из постулатов Мэрфи). Исследование отдельных статистических объектов позволяет получить о них полезную информацию и описать их стандартными показателями. При этом изучаемую совокупность можно представить в виде ряда распределения путем ранжирования (в порядке возрастания или убывания анализи-руемого количественного признака), дать характеристику этой совокупности, указав центральные значения ряда (среднее арифметическое, медиана, мода), размах варьирования, форму кривой распределения. Такого рода сведения могут быть вполне достаточными в случаях, когда приходится иметь дело с одномерными данными (т.е. лишь с одной характеристикой, например, зарплатой) о каждой единице совокупности (скажем, о сотруднике фирмы).

Когда же мы анализируем двумерные данные (например, зарплата и образование), всегда есть возможность изучать каждое измерение по отдельности — как часть одномерной совокупности данных. Однако реальную отдачу можно получить лишь при совместном изучении обоих параметров. Основное назначение такого подхода — возможность выявления взаимосвязи между параметрами.

Следовательно, помимо традиционных измерений и последующих вычислений при анализе статистических данных приходится решать проблему и более высокого уровня — выявление функциональной зависимости между воздействующим фактором и регистрируемой (изучаемой) величиной.

Указанные ситуации весьма типичны в статистической практике, и в этом смысле аналитическая работа коммерсанта весьма богата такими примерами.

Зависимость одной случайной величины от значений, которые принимает другая случайная величина (физическая характеристика), в статистике называется регрессией. Если этой зависимости придан аналитический вид, то такую форму представления изображают уравнением регрессии. Процедура поиска предполагаемой зависимости между различными числовыми совокупностями обычно включает следующие этапы: становление значимости связи между ними; возможность представления этой зависимости в форме математического выражения (уравнения регрессии).

Первый этап в указанном статистическом анализе касается выявления так называемой корреляции, или корреляционной зависимости.

Корреляцию и регрессию принято рассматривать как совокупный процесс статистического исследования, поэтому их использование в статистике часто именуют корреляционно-регрессионным анализом. Если между парами совокупностей просматривается вполне очевидная связь (ранее нами это исследовалось, есть публикации на данную тему и т.д.), то, минуястадию корреляции, можно сразу приступать к поиску уравнения регрессии.

Если же исследования касаются какого-то нового процесса, ранее не изучавшегося, то наличие связи между совокупностями является предметом специального поиска. При этом условно можно выделить методы, которые позволяют оценить наличие связи качественно, и методы, дающие количественные оценки. Чтобы выявить наличие качественной корреляционной связи между двумя исследуемыми числовыми наборами экспериментальных данных, существуют различные методы, которые принято называть элементарными. Ими могут быть приемы, основанные на следующих операциях: параллельном сопоставлении рядов; построении корреляционной и групповой таблиц; графическом изображении с помощью поля корреляции.

Другой метод, более сложный и статистически надежный, — это количественная оценка связи посредством расчета коэффициента корреляции и его статистической проверки. Познакомимся со способом оценки корреляционной связи посредством расчета коэффициента корреляции, рассмотрев конкретный пример.

Пусть у нас имеются n серии значений двух параметров X и Y:

Подразумевается, что у одного и того же объекта измерены два параметра. Нам надо выяснить есть ли значимая связь между этими параметрами. Как известно, случайные величины X и Y могут быть либо зависимыми, либо независимыми. Существуют следующие формы зависимости — функциональная и статистическая. В математике функциональной зависимостью переменной Y от переменной Х называют зависимость, где каждому допустимому значению X ставится в соответствие по определенному правилу единственно возможное значение Y.

Однако, если X и Y случайные величины, то между ними может существовать зависимость иного рода, называемая статистической. Дело в том, что на формирование значений случайных величин X и Y оказывают влияние различные факторы. Под воздействием этих факторов и формируются конкретные значения X и Y. Допустим, что на Х и У влияют одни те же факторы, например Z1, Z2, Z3, тогда X и Y находятся в полном соответствии друг с другом и связаны функционально. Предположим теперь, что на X воздействуют факторы Z1, Z2, Z3, а на только Y и Z1, Z2. Обе величины и X и Y являются случайными, но так как имеются общие факторы Z1 и Z2, оказывающие влияние и на X и на Y, то значения X и Y обязательно будут взаимосвязаны. И связь это уже не будет функциональной: фактор Z3, влияющий лишь на одну из случайных величин, разрушает прямую (функциональную) зависимость между значениями X и Y, принимаемыми в одном и том же испытании. Связь носит вероятностный случайный характер, в численном выражении меняясь, от испытания к испытанию, но эта связь определенно присутствует и называется статистической. При этом каждому значению X может соответствовать не одно значение Y, как при функциональной зависимости, а целое множество значений.

Определение. Зависимость случайных величин называют статистической, если изменения одной из них приводит к изменению закона распределения другой.

Определение. Если изменение одной из случайных величин влечет изменение среднего другой случайной величины, то статистическую зависимость называют корреляционной. Сами случайные величины, связанные коррреляционной зависимостью, оказываются коррелированными.

Примерами коррреляционной зависимости являются: зависимость массы от роста:

— каждому значению роста (X) соответствует множество значений массы (Y), причем, несмотря на общую тенденцию, справедливую для средних, большему значению роста соответствует и большее значение массы — в отдельных наблюдениях субъект с большим ростом может иметь и меньшую массу;

— зависимость заболеваемости от воздействия внешних факторов, например, запыленности, уровня радиации, солнечной активности и т.д.;

— количество (X) вводимого объекту препарата и его концентрация в крови (Y);

— между показателями уровня жизни населения и процентом смертности;

— между количеством пропущенных студентами лекций и оценкой на экзамене.

Именно корреляционные зависимости наиболее часто встречаются в природе в силу взаимовлияния и тесного переплетения огромного множества самых различных факторов, определяющих значения изучаемых показателей. Корреляционную зависимость Y от X можно описать с помощью уравнения вида:

Уравнение называется выборочным уравнением регрессии Y на X. Функцию f(x) называют выборочной регрессией Y на X, а ее график — выборочной линией регрессии Y на X. Совершенно аналогично выборочным уравнением регрессии X на Y является уравнение:

В зависимости от вида уравнения регрессии и формы соответствующей линии регрессии определяют форму корреляционнной зависимости между рассматриваемыми величинами — линейной, квадратической, показательной, экспоненциальной. Важнейшим является вопрос выбора вида функции регрессии f(x) или ф(y), например линейная или нелинейная (показательная, логарифимическая и т.д.) На практике вид функции регрессии можно определить, построив на координатной плоскости множество точек, соответствующих всем имеющимся парам наблюдений (x;y).

Например, на графике 1 видна тенденция роста значений Y с ростом X, при этом средние значения Y располагается визуально на прямой. Имеет смысл использовать линейную модель (вид зависимости Y от X принято называть моделью) зависимости Y от X. На графике 2 средние значения Y не зависят от x, следовательно линейная регрессия незначима (функция регрессии постоянна и равна ). На графике 3 прослеживается тенденция нелинейности модели.

Две случайные величины X и У называют коррелированными, если их корреляционный момент (или, что то же, коэффициент корреляции) отличен от нуля; X и У называют некоррелированными величинами, если их корреляционный момент равен нулю. Две коррелированные величины также и зависимы. Действительно, допустив противное, мы должны заключить, что:

Обратное предположение не всегда имеет место, т. е. если две величины зависимы, то они могут быть как коррелированными, так и некоррелированными. Другими словами, корреляционный момент двух зависимых величин может быть не равен нулю, но может и равняться нулю. Убедимся на примере, что две зависимые величины могут быть некоррелированными.

Пример. Двумерная случайная величина (X, Y) задана плотностью распределения:

Доказать, что X и Y — зависимые некоррелированные величины.

Решение. Воспользуемся ранее вычисленными плотностями распределения составляющих X и Y:

Внутренний интеграл равен нулю (подынтегральная функция нечетна, пределы интегрирования симметричны относительно начала координат), следовательно:

Итак, из коррелнрованности двух случайных величин следует их зависимость, но из зависимости еще не вытекает коррелированность. Из независимости двух величин следует их некоррелированность, но из некоррелированности еще нельзя заключить о независимости этих величин. Заметим, однако, что из некоррелированности нормально распределенных величин вытекает их независимость. Это утверждение будет доказано в следующем параграфе.

Виды корреляции

Виды корреляционной связи между измеренными переменными могут быть различны: так корреляция бывает линейной и нелинейной, положительной и отрицательной. Она линейна, если с увеличением или уменьшением одной переменной, вторая переменная также растёт, либо убывает. Она нелинейна, если при увеличении одной величины характер изменения второй не линеен, а описывается другими законами (полиномиальная, гиперболическая).

Если повышение уровня одной переменной сопровождается повышением уровня другой, то речь идет о положительной корреляции. Чем выше личностная тревожность, тем больше риск заболеть язвой желудка. Возрастание громкости звука сопровождается ощущением повышения его тона.

Если рост уровня одной переменной сопровождается снижением уровня другой, то мы имеем дело с отрицательной корреляцией. По данным Зайонца, число детей в семье отрицательно коррелирует с уровнем их интеллекта. Чем боязливей особь, тем меньше у нее шансов занять доминирующее положение в группе. Нулевой называется корреляция при отсутствии связи переменных.

В психологии практически нет примеров строго линейных связей (положительных или отрицательных). Большинство связей — нелинейные. Классический пример нелинейной зависимости — закон Йеркса-Додсона:. возрастание мотивации первоначально повышает эффективность научения , а затем наступает снижение продуктивности (эффект «перемотивации»). Другим примером является связь между уровнем мотивации достижений и выбором задач различной трудности. Лица, мотивированные надеждой на успех, предпочитают задания среднего диапазона трудности — частота выборов на шкале трудности описывается колоколообразной кривой.

Примеры распределений испытуемых в пространстве двух признаков: а) строгая положительная корреляция, б) сильная положительная корреляция, в) слабая положительная корреляция, г) нулевая корреляция, д) отрицательная корреляция, е) строгая отрицательная корреляция, ж) нелинейная корреляция, з) нелинейная корреляция.

Отрицательная и положительная корреляция

Некоторые виды коэффициентов корреляции могут быть положительными или отрицательными (возможна также ситуация отсутствия статистической взаимосвязи — например, для независимых случайных величин). Если предполагается, что на значениях переменных задано отношение строгого порядка, то отрицательная корреляция — корреляция, при которой увеличение одной переменной связано с уменьшением другой переменной, при этом коэффициент корреляции может быть отрицательным; положительная корреляция в таких условиях — корреляция, при которой увеличение одной переменной связано с увеличением другой переменной, при этом коэффициент корреляции может быть положительным.

Автокорреляция — статистическая взаимосвязь между случайными величинами из одного ряда, но взятых со сдвигом, например, для случайного процесса — со сдвигом по времени. Рассмотрим следующую задачу. Была проведена серия измерений двух случайных величин X и Y, причем измерения проводились попарно: т.е. за одно измерение мы получали два значения — xi и yi . Имея выборку, состоящую из пар (xi , yi ), мы хотим определить, имеется ли между этими двумя переменными зависимость.

Зависимость между случайными величинами может иметь функциональный характер, т.е. быть строгим функциональным отношением, связывающим их значения. Однако при обработке экспериментальных данных гораздо чаще встречаются зависимости другого рода: статистические зависимости. Различие между двумя видами зависимостей состоит в том, что функциональная зависимость устанавливает строгую взаимосвязь между переменными, а статистическая зависимость лишь говорит о том, что распределение случайной величины Y зависит от того, какое значение принимает случайная величина X.

Отрицательная корреляция — это вид корреляционной зависимости между случайными величинами, при к-рой условные средние значения одной из них уменьшаются при возрастании значений другой величины. Об отрицательной корреляции между величинами с корреляции коэффициентомr говорят в том случае, когда p меньше0.

Связь между двумя переменными может быть следующей — когда значения одной переменной убывают, значения другой возрастают. Это и показывает отрицательный коэффициент корреляции. Про такие переменные говорят, что они отрицательно коррелированы.

Примером отрицательной корреляции может быть взаимосвязь между бесполезно потраченным временем и средним баллом. Бесполезно потраченное время можно операционально определить как количество часов в неделю, потраченное на определенные занятия, например на игру в видеоигры, просмотр телесериалов или игру в гольф (конечно, эти виды! деятельности можно назвать и «терапией»). Ниже приведены гипотетические данные для других восьми студентов. На этот раз вы увидите обратную взаимосвязь между количеством часов в неделю, потраченных впустую, и средним баллом:

Взаимосвязь между временем, посвященным занятиям, и оценками является примером положительной корреляции. Приведенные ниже данные, полученные в ходе гипотетического исследования восьми студентов, говорят о наличии положительной корреляции. В данном случае первой переменной является время, операционально определенное как количество часов в неделю, потраченных на учебу, а второй — средний балл (СБ), варьирующийся от 0,0 до 4,0.

Значительное время, потраченное на учебу (42 часа), связано с высоким средним баллом (3,3), а самое малое время (16 часов) — с низким баллом (1,9).

Примером отрицательной корреляции может быть взаимосвязь между бесполезно потраченным временем и средним баллом. Бесполезно потраченное время можно операционально определить как количество часов в неделю, потраченное на определенные занятия, например на игру в видеоигры, просмотр телесериалов или игру в гольф (конечно, эти виды! деятельности можно назвать и «терапией»). Ниже приведены гипотетические данные для других восьми студентов. На этот раз вы увидите обратную взаимосвязь между количеством часов в неделю, потраченных впустую, и средним баллом:

Обратите внимание, что при отрицательной корреляции переменные имеют обратную взаимосвязь: большое количество потраченного зря времени (42) связано с низким средним баллом (1,8), а небольшое (16) — с более высоким (3,7).

Силу корреляции показывает особая величина описательной статистики, носящая название «коэффициент корреляции». Коэффициент корреляции равен -1,00 в случае прямой отрицательной корреляции, 0,00 при отсутствии взаимосвязи и + 1,00 при полной положительной корреляции. Наиболее распространенным коэффициентом корреляции является пирсоново r, названное так в честь британского ученого, соперничающего в известности с сэром Рональдом Фишером. Пирсоново r вычисляется для данных, полученных с помощью интервальной шкалы или шкалы отношений. В случае других шкал измерений рассматриваются другие виды корреляции. К примеру, для порядковых данных (т. е. упорядоченных) вычисляется «ро» Спирмена. В приложении С показано, как вычислять пирсоново r.

Так же как среднее арифметическое и стандартное отклонение, коэффициент корреляции является величиной описательной статистики. В ходе заключительного анализа определяется, является ли конкретная корреляция значимо большей (или меньшей) нуля. Таким образом, для корреляционных исследований нулевая гипотеза (Н0) говорит, что действительное значение r равно 0 (т. е. нет никаких взаимосвязей), а альтернативная гипотеза (Н) — что r № 0. Отвергнуть нулевую гипотезу — значит решить, что между двумя переменными существует значимая взаимосвязь. В приложении С показано, как определить, является ли корреляция статистически значимой.

Линейная и нелинейная корреляция

Корреляционный анализ занимается степенью связи между двумя случайными величинами Х и Y. Корреляционный анализ экспериментальных данных для двух случайных величин заключает в себе следующие основные приемы:

— вычисление выборочных коэффициентов корреляции;

— составление корреляционной таблицы;

— проверка статистической гипотезы значимости связи.

Определение. Корреляционная зависимость между случайными величинами Х и Y называется линейной корреляцией, если обе функции регрессии f(x) и ф(x) являются линейными. В этом случае обе линии регрессии являются прямыми; они называется прямыми регрессии.

Для достаточно полного описания особенностей корреляционной зависимости между величинами недостаточно определить форму этой зависимости и в случае линейной зависимости оценить ее силу по величине коэффициента регрессии. Например, ясно, что корреляционная зависимость возраста Y учеников средней школы от года Х их обучения в школе является, как правило, более тесной, чем аналогичная зависимость возраста студентов высшего учебного заведения от года обучения, поскольку среди студентов одного и того же года обучения в вузе обычно наблюдается больший разброс в возраcте, чем у школьников одного и того же класса.

Для оценки тесноты линейных корреляционных зависимостей между величинами Х и Y по результатам выборочных наблюдений вводится понятие выборочного коэффициента линейной корреляции, определяемого формулой:

Следует отметить, что основной смысл выборочного коэффициента линейной корреляции rB состоит в том, что он представляет собой эмпирическую (т.е. найденную по результатам наблюдений над величинами Х и Y) оценку соответствующего генерального коэффициента линейной корреляции r. Принимая во внимание формулы:

Видим, что выборочное уравнение линейной регрессии Y на Х имеет вид:

Основные свойства выборочного коэффициента линейной корреляции:

1. Коэффициент корреляции двух величин, не связанных линейной корреляционной зависимостью, равен нулю.

2. Коэффициент корреляции двух величин, связанных линейной корреляционной зависимостью, равен 1 в случае возрастающей зависимости и -1 в случае убывающей зависимости.

3. Абсолютная величина коэффициента корреляции двух величин, связанных линейной корреляционной зависимостью, удовлетворяет неравенству 0 меньше r меньше 1.

4. Чем ближе r к 1, тем теснее прямолинейная корреляция между величинами Y, X.

По своему характеру корреляционная связь может быть прямой и обратной, а по силе — сильной, средней, слабой. Кроме того, связь может отсутствовать или быть полной.

Пример 4. Изучалась зависимость между двумя величинами Y и Х. Результаты наблюдений приведены в таблице в виде двумерной выборки объема 11:

1. Вычислить выборочный коэффициент корреляции.

2. Оценить характер и силу корреляционной зависимости.

3. Написать уравнение линейной регрессии Y на Х.

Решение. По известным формулам:

Таким образом, следует сделать вывод, что рассматриваемая корреляционная зависимость между величинами Х и Y является по характеру — обратной, по силе — средней. Уравнение линейной регрессии Y на Х:

Пример 5. Изучалась зависимость между качеством Y (%) и количеством Х (шт). Результаты наблюдений приведены в виде корреляционной таблицы:

Требуется вычислить выборочный коэффициент линейной корреляции зависимости Y от Х.

Решение. Для упрощения вычислений перейдем к новым переменным — условным вариантам (ui, vi), воспользовавшись формулами при

Для удобства перепишем данную таблицу в новых обозначениях:

Вывод: Корреляционная зависимость между величинами Х и Y — прямая и сильная.

Выбрав вид функции регрессии, т.е. вид рассматриваемой модели зависимости Y от Х (или Х от У), например, линейную модель, необходимо определить конкретные значения коэффициентов модели. При различных значениях а и b можно построить бесконечное число зависимостей, т.е на координатной плоскости имеется бесконечное количество прямых, нам же необходима такая зависимость, которая соответствует наблюдаемым значениям наилучшим образом. Таким образом, задача сводится к подбору наилучших коэффициентов.

Линейную функцию ищем, исходя лишь из некоторого количества имеющихся наблюдений. Для нахождения функции с наилучшим соответствием наблюдаемым значениям используем метод наименьших квадратов. В методе наименьших квадратов требуется, чтобы еi, разность между измеренными yi и вычисленными по уравнению значениям Yi, была минимальной. Следовательно, находим коэффициенты а и b так, чтобы сумма квадратов отклонений наблюдаемых значений от значений на прямой линии регрессии оказалась наименьшей:

Исследуя на экстремум эту функцию аргументов а и с помощью производных, можно доказать, что функция принимает минимальное значение, если коэффициенты а и b являются решениями системы:

Если разделить обе части нормальных уравнений на n, то получим:

При этом b называют коэффициентом регрессии; a называют свободным членом уравнения регрессии и вычисляют по формуле:

Полученная прямая является оценкой для теоретической линии регрессии. Имеем:

Регрессия может быть прямой (b больше 0) и обратной (b меньше 0). Прямая регрессия означает, что при росте одного параметра, значения другого параметра тоже увеличиваются. А обратная, что при росте одного параметра, значения другого параметра уменьшаются.

Пример 1. Результаты измерения величин X и Y даны в таблице:

Предполагая, что между X и Y существует линейная зависимость, способом наименьших квадратов определить коэффициенты a и b. Решение. Здесь n=5:

Решая эту систему, получим:

Пример 2. Имеется выборка из 10 наблюдений экономических показателей (X) и (Y).

Требуется найти выборочное уравнение регрессии Y на X. Построить выборочную линию регрессии Y на X.

Решение. 1. Проведем упорядочивание данных по значениям xi и yi. Получаем новую таблицу:

Для упрощения вычислений составим расчетную таблицу, в которую занесем необходимые численные значения.

Согласно формуле, вычисляем коэффициента регрессии:

Нанесем на координатной плоскости точки (xi; yi) и отметим прямую регрессии.

На графике видно, как располагаются наблюдаемые значения относительно линии регрессии. Для численной оценки отклонений yi от Yi, где yi наблюдаемые, а Yi определяемые регрессией значения, составим таблицу:

Значения Yi вычислены согласно уравнению регрессии. Заметное отклонение некоторых наблюдаемых значений от линии регрессии объясняется малым числом наблюдений. При исследовании степени линейной зависимости Y от X число наблюдений учитывается. Сила зависимости определяется величиной коэффициента корреляции.

Показатели и коэффициенты корреляции

Случайная величина описывается двумя числовыми характеристиками: математическим ожиданием и дисперсией. Чтобы описать систему из двух случайных величин кроме «основных» характеристик используют так же корреляционный момент и коэффициент корреляции. Корреляционным моментом случайных величин X и У называют математическое ожидание произведения отклонений этих величин:

Коэффициент корреляции: заблуждение и неочевидные выводы

Для нахождения корреляционного момента дискретных величин используют формулу:

а для непрерывных величин — формулу :

Корреляционный момент характеризует наличие (отсутствие) связи между величинами X и У. Ниже будет доказано, что корреляционный момент равен нулю, если X и У независимы; Если же корреляционный момент для случайных величин X и Y не равен нулю, то между ними имеется завимость.

Замечание 1. Приняв во внимание, что отклонения есть центрированные случайные величины, можно дать корреляционному моменту определение, как математическому ожиданию произведения двух центрированных случайных величин:

Замечание 2. Не сложно доказать, что корреляционный момент можно записать в виде:

Теорема 1. Корреляционный момент двух независимых случайных величин X и Y равен нулю.

Доказательство. Так как X и У — независимые случайные величины, то их отклонения X-М (X) и У-М (У) также независимы. Пользуясь свойствами математического ожидания (математическое ожидание произведения независимых случайных величин равно произведению математических ожиданий сомножителей) и отклонения (математическое ожидание отклонения равно нулю), получим:

Из определения корреляционного момента следует, что он имеет размерность, равную произведению размерностей величин X и У. Другими словами, величина корреляционного момента зависит от единиц измерения случайных величин. По этой причине для одних и тех же двух величин величина корреляционного момента имеет различные значения в зависимости от того, в каких единицах были измерены величины. Пусть, например, X и У были измерены в сантиметрах и mxy = 2 см2; если измерить X и У в миллиметрах, то mxy = 200 мм. Такая особенность корреляционного момента является недостатком этой числовой характеристики, поскольку сравнение корреляционных моментов различных систем случайных величин становится затруднительным. Для того чтобы устранить этот недостаток, вводят новую числовую характеристику-коэффициент корреляции.

Коэффициентом корреляции гху случайных величин X и У называют отношение корреляционного момента к произведению средних квадратических отклонений этих величин:

Так как размерность mxy равна произведению размерностей величин X и У, x имеет размерность величины X, y имеет размерность величины Y, то rxy — безразмерная величина. Таким образом, величина коэффициента корреляции не зависит от выбора единиц измерения случайных величин. В этом состоит преимущество коэффициента корреляции перед корреляционным моментом. Очевидно, коэффициент корреляции независимых случайных величин равен нулю (так как mxy = 0).

Замечание 3. Во многих вопросах теории вероятностей целесообразно вместо случайной величины X рассматривать нормированную случайную величину X, которую определяют как отношение отклонения к среднему квадратическому отклонению:

Коэффициент корреляции. Тема

Нормированная величина имеет математическое ожидание, равное нулю, и дисперсию, равную единице. Действительно, используя свойства математического ожидания и дисперсии, имеем:

Легко убедиться, что коэффициент корреляции rху равен корреляционному моменту нормированных величин X и Y :

Теорема 2. Абсолютная величина корреляционного момента двух случайных величин X и Y не превышает среднего геометрического их дисперсий:

Теорема 3. Абсолютная величина коэффициента корреляции не превышает единицы.

Доказательство: Разделим обе части полученного двойного неравенства на произведение положительных чисел:

Параметрические показатели корреляции

Рассмотрим двумерную случайную величину (X, Y). Если обе функции регрессии У на X и X на У линейны, то говорят, что X и Y связаны линейной корреляционной зависимостью. Очевидно, что графики линейных функций регрессии — прямые линии, причем можно доказать, что они совпадают с прямыми среднеквадратической регрессии. Имеет место следующая важная теорема.

Теорема. Если двумерная случайная величина (X, Y) распределена нормально, то X и Y связаны линейной корреляционной зависимостью.

Доказательство. Двумерная плотность вероятности:

Плотность вероятности составляющей X:

Найдем функцию регрессии для чего сначала найдем условный закон распределения величины Y при Х=х:

Полученное условное распределение нормально с математическим ожиданием (функцией регрессии У на X):

Аналогично можно получить функцию регрессии X на Y:

Так как обе функции регрессии линейны, то корреляция между величинами X и Y линейная, что и требовалось доказать. Принимая во внимание вероятностный смысл параметров двумерного нормального распределения, заключаем, что уравнения прямых регрессии совпадают с уравнениями прямых среднеквадратической регрессии:

Ковариация

Ковариация (корреляционный момент, ковариационный момент) в теории вероятностей и математической статистике мера линейной зависимости двух случайных величин. Пусть X, Y — две случайные величины, определённые на одном и том же вероятностном пространстве. Тогда их ковариация определяется следующим образом:

Предполагается, что все математические ожидания Е в правой части данного выражения определены.

Пусть X1, X2, . ,Xn, Y1, Y2, . ,Yn — выборки Xn и Yn случайных величин, определённых на одном и том же вероятностном пространстве. Тогда ковариацией между выборками Xn и Yn является:

Если ковариация положительна, то с ростом значений одной случайной величины, значения второй имеют тенденцию возрастать, а если знак отрицательный — то убывать. Однако только по абсолютному значению ковариации нельзя судить о том, насколько сильно величины взаимосвязаны, так как её масштаб зависит от их дисперсий. Масштаб можно отнормировать, поделив значение ковариации на произведение среднеквадратических отклонений (квадратных корней из дисперсий). При этом получается так называемый коэффициент корреляции Пирсона, который всегда находится в интервале от −1 до 1.

Случайные величины, имеющие нулевую ковариацию, называются некоррелированными. Независимые случайные величины всегда некоррелированы, но не наоборот. Обсудим достоинства и недостатки ковариации, как величины, характеризующей зависимость двух случайных величин.

1. Если ковариация отлична от нуля, то случайные величины зависимы. Чтобы судить о наличии зависимости согласно любому из определений независимости, требуется знать совместное распределение пары случайных величин. Но найти совместное распределение часто бывает сложнее, чем посчитать математическое ожидание произведения случайных величин. Если нам повезёт, и математическое ожидание произведения случайных величин не будет равняться произведению их математических ожиданий, мы скажем, что случайные величины зависимы, не находя их совместного распределения! Это очень хорошо.

2. Величина ковариации не является «безразмерной»: если е — объем газа в сосуде, а n — давление этого газа, то ковариация измеряется в м3Па. Иначе говоря, при умножении этих величин на какое-нибудь число ковариация тоже умножается на это число. Но умножение на число не сказывается на «степени зависимости» величин (они от этого «более зависимыми» не становятся), так что большое значение ковариации не означает более сильной зависимости. Это очень плохо.

Нужно как-то нормировать ковариацию, получив из неё «безразмерную» величину, абсолютное значение которой: не менялось бы при умножении случайных величин на число и свидетельствовало бы о «силе зависимости» случайных величин.

Замечание: Говоря о «силе» зависимости между случайными величинами, мы имеем в виду следующее. Самая сильная зависимость — функциональная, а из функциональных — линейная зависимость, когда:

Бывают гораздо более слабые зависимости. Так, если по последовательности независимых случайных величин построить величины:

то эти величины зависимы, но очень «слабо»: через единственное общее слагаемое Е25. Сильно ли зависимы число гербов в первых двадцати пяти подбрасываниях монеты и число гербов в испытаниях с двадцать пятого по девяностое? Итак, следующая величина есть всего лишь ковариация, нормированная нужным образом.

Теорема (неравенство Коши — Буняковского):

Ковариационная матрица (или матрица ковариаций) в теории вероятностей — это матрица, составленная из попарных ковариаций элементов одного или двух случайных векторов. Ковариационная матрица случайного вектора — квадратная симметрическая матрица, на диагонали которой располагаются дисперсии компонент вектора, а внедиагональные элементы — ковариациями между компонентами.

Такая матрица ковариации является обобщением дисперсии для многомерной случайной величины, а ее след — скалярным выражением дисперсии многомерной случайной величины. Собственные векторы и собственные числа этой матрицы позволяют оценить размеры и форму облака распределения такой случайной величины, аппроксимировав его эллипсоидом (или эллипсом в двумерном случае).

Свойства мартиц ковариации:

Линейный коэффициент корреляции (коэффициент корреляции Пирсона)

Линейный корреляционный анализ позволяет установить прямые связи между переменными величинами по их абсолютным значениям. Формула расчета коэффициента корреляции построена таким образом, что если связь между признаками имеет линейный характер, коэффициент Пирсона точно устанавливает тесноту этой связи. Поэтому он называется также коэффициентом линейной корреляции Пирсона.

В общем виде формула для подсчета коэффициента корреляции такова:

Расчет коэффициента корреляции Пирсона предполагает, что переменные X и Y распределены нормально. Даная формула предполагает, что из каждого значения xi переменной X, должно вычитаться ее среднее значение x. Это не удобно, поэтому для расчета коэффициента корреляции используют не данную формулу, а ее аналог, получаемый с помощью преобразований:

Используя данную формулу, решим следующую задачу: 20 школьникам были даны тесты на наглядно-образное и вербальное мышление. Измерялось среднее время решения заданий теста в секундах. Психолога интересует вопрос: существует ли взаимосвязь между временем решения этих задач? Переменная X — обозначает среднее время решения наглядно-образных, а переменная Y — среднее время решения вербальных заданий тестов.

Для решения данной задачи представим исходные данные в виде таблицы, в которой введены дополнительные столбцы, необходимые для расчета по формуле В таблице 12 даны индивидуальные значения переменных X и Y, построчные произведения переменных X и Y, квадраты переменных всех индивидуальных значений переменных X и Y, а также суммы всех вышеперечисленных величин.

Рассчитываем эмпирическую величину коэффициента корреляции по формуле:

Определяем критические значения для полученного коэффициента корреляции. Величины критических значений коэффициентов линейной корреляции Пирсона даны по абсолютной величине. Следовательно, при получении как положительного, так и отрицательного коэффициента корреляции по формуле оценка уровня значимости этого коэффициента проводится по той же таблице приложения без учета знака, а знак добавляется для дальнейшей интерпретации характера связи между переменными X и Y.

При нахождении критических значений для вычисленного коэффициента корреляции Пирсона число степеней свободы рассчитывается как

Строим соответствующую «ось значимости»:

Ввиду того, что величина расчетного коэффициента корреляции попала в зону значимости — Н0 отвергается и принимается гипотеза Н1. Иными словами, связь между временем решения наглядно-образных и вербальных задач статистически значима на 1% уровне и положительна. Полученная прямо пропорциональная зависимость говорит о том, что чем выше среднее время решения наглядно-образных задач, тем выше среднее время решения вербальных и наоборот.

Для применения коэффициента корреляции Пирсона, необходимо соблюдать следующие условия: сравниваемые переменные должны быть получены в интервальной шкале или шкале отношений, распределения переменных X и Y должны быть близки к нормальному, число варьирующих признаков в сравниваемых переменных X и Y должно быть одинаковым.

Корреляционный анализ Спирмена. Коэффициент корреляции Спирмена. КОРРЕЛЯЦИЯ. АНАЛИЗ ДАННЫХ.

Пример решения задачи при помощи коэффициента Пирсона. На основании наблюдений за развивающимся сайтом и изменением его средневзвешенной позиции по основным запросам в поисковой системе необходимо проверить, можно ли говорить о линейной зависимости между позицией сайта и числом посетителей. Исходные данные: X (число посетителей в сутки), Y (усредненная позиция сайта в поисковой системе). В таблице представлены значения признаков X и Y:

1. На основании исходных данных, приведенных в таблице, расчитаем средние значения для X и Y:

Все необходимые для расчета коэффициента корреляции промежуточные данные и их суммы представлены в таблице:

Коэффициент корреляции Пирсона, 2 способа вычисления

Оценим полученное нами эмпирическое значение коэффициента Пирсона, сравнив его с соответствующим критическим значением для заданного уровня значимости из таблицы критических значений коэффициента корреляции Пирсона. Для выборки с числом элементов m = 9 и уровнем значимости p = 0,05 критическое значение коэффициента Пирсона = 0,67, с уровнем значимости p = 0,01 критическое значение коэффициента Пирсона = 0,8. Так как абсолютное значение, полученного нами коэффициента корреляции меньше критического значения, взятого из таблицы (находится вне зоны значимости), мы принимаем гипотезу Н0 об отсутcтвии корреляционной зависимости между выборками. Полученный результат свидетельствует об отсутствии линейной зависимости между числом посетителей сайта и его позицией в поисковой системе, однако это не означает, что эти параметры не связаны между собой.

Непараметрические показатели корреляции

Непараметрические методы как раз и разработаны для тех ситуаций, достаточно часто возникающих на практике, когда исследователь ничего не знает о параметрах исследуемой популяции (отсюда и название методов — непараметрические). Говоря более специальным языком, непараметрические методы не основываются на оценке параметров (таких как среднее или стандартное отклонение) при описании выборочного распределения интересующей величины. Поэтому эти методы иногда также называются свободными от параметров или свободно распределенными.

По существу, для каждого параметрического критерия имеется, по крайней мере, один непараметрический аналог. Эти критерии можно отнести к одной из следующих групп: критерии различия между группами (независимые выборки); критерии различия междугруппами (зависимые выборки); критерии зависимости между переменными.

Различия между независимыми группами. Обычно, когда имеются две выборки (например, мужчины и женщины), которые вы хотите сравнить относительно среднего значения некоторой изучаемой переменной, вы используете t-критерий для независимых выборок (в модуле Основные статистики и таблицы). Непараметрическими альтернативами этому критерию являются: критерий серий Вальда-Вольфовица, U критерий Манна-Уитни и двухвыборочный критерий Колмогорова-Смирнова. Если вы имеете несколько групп, то можете использовать дисперсионный анализ. Его непараметрическими аналогами являются: ранговый дисперсионный анализ Краскела-Уоллиса и медианный тест.

Различия между зависимыми группами. Если вы хотите сравнить две переменные, относящиеся к одной и той же выборке (например, математические успехи студентов в начале и в конце семестра), то обычно используется t-критерий для зависимых выборок (в модуле Основные статистики и таблицы. Альтернативными непараметрическими тестами являются: критерий знаков и критерий Вилкоксона парных сравнений. Если рассматриваемые переменные по природе своей категориальны или являются категоризованными (т.е. представлены в виде частот попавших в определенные категории), то подходящим будет критерий хи-квадрат Макнемара. Если рассматривается более двух переменных, относящихся к одной и той же выборке, то обычно используется дисперсионный анализ (ANOVA) с повторными измерениями. Альтернативным непараметрическим методом является ранговый дисперсионный анализ Фридмана или Q критерий Кохрена (последний применяется, например, если переменная измерена в номинальной шкале). Q критерий Кохрена используется также для оценки изменений частот (долей).

Зависимости между переменными. Для того, чтобы оценить зависимость (связь) между двумя переменными, обычно вычисляют коэффициент корреляции. Непараметрическими аналогами стандартного коэффициента корреляции Пирсона являются статистикиСпирмена R, тау Кендалла и коэффициент Гамма. Если две рассматриваемые переменные по природе своей категориальны, подходящими непараметрическими критериями для тестирования зависимости будут: Хи-квадрат, Фи коэффициент, точный критерий Фишера. Дополнительно доступен критерий зависимости между несколькими переменными так называемый коэффициент конкордации Кендалла. Этот тест часто используется для оценки согласованности мнений независимых экспертов (судей), в частности, баллов, выставленных одному и тому же субъекту.

Описательные статистики. Если данные не являются нормально распределенными, а измерения, в лучшем случае, содержат ранжированную информацию, то вычисление обычных описательных статистик (например, среднего, стандартного отклонения) не слишком информативно. Например, в психометрии хорошо известно, что воспринимаемая интенсивность стимулов (например, воспринимаемая яркость света) представляет собой логарифмическую функцию реальной интенсивности (яркости, измеренной в объективных единицах — люксах). В данном примере, обычная оценка среднего (сумма значений, деленная на число стимулов) не дает верного представления о среднем значении действительной интенсивности стимула. (В обсуждаемом примере скорее следует вычислить геометрическое среднее.) Модуль Непараметрическая статистика вычисляет разнообразный набор мер положения (среднее, медиану, моду и т.д.) и рассеяния (дисперсию , гармоническое среднее, квартильный размах и т.д.), позволяющий представить более «полную картину» данных.

Нелегко дать простой совет, касающийся использования непараметрических процедур. Каждая непараметрическая процедура в модуле имеет свои достоинства и свои недостатки. Например, двухвыборочный критерий Колмогорова-Смирнова чувствителен не только к различию в положении двух распределений, например, к различиям средних, но также чувствителен и к форме распределения. Критерий Вилкоксона парных сравнений предполагает, что можно ранжировать различия между сравниваемыми наблюдениями. Если это не так, лучше использовать критерий знаков. В общем, если результат исследования является важным (например, оказывает ли людям помощь определенная очень дорогостоящая и болезненная терапия?), то всегда целесообразно применить различные непараметрические тесты. Возможно, результаты проверки (разными тестами) будут различны. В таком случае следует попытаться понять, почему разные тесты дали разные результаты. С другой стороны, непараметрические тесты имеют меньшую статистическую мощность (менее чувствительны), чем их параметрические конкуренты, и если важно обнаружить даже слабые отклонения (например, является ли данная пищевая добавка опасной для людей), следует особенно внимательно выбирать статистику критерия.

Большие массивы данных и непараметрические методы. Непараметрические методы наиболее приемлемы, когда объем выборок мал. Если данных много (например, n больше 100), то не имеет смысла использовать непараметрические статистики. Главное здесь состоит в том, что когда выборки становятся очень большими, то выборочные средние подчиняются нормальному закону, даже если исходная переменная не является нормальной или измерена с погрешностью. Таким образом, параметрические методы, являющиеся более чувствительными (имеют большую статистическую мощность), всегда подходят для больших выборок. Большинство критериев значимости многих непараметрических статистик, описанных далее, основываются на асимптотической теории (больших выборок) поэтому соответствующие тесты часто не выполняются, если размер выборки становится слишком малым. Обратитесь к описаниям определенных критериев, чтобы узнать больше об их мощности и эффективности.

Честные Форекс брокеры этого года:
Оцените статью
Сайт любителей Форекса