МАТЕМАТИЧЕСКОЕ ОЖИДАНИЕ ФОРЕКСА

Лучшие Форекс брокеры 2021:

Математическое ожидание на Форекс

Математическое ожидание на форекс является интересным и неоднозначным вопросом. Поклонники технического анализа найдут эту тему полезной, противники — нет. Проблема этого понятия уже в том, что для расчета нам нужна статистика по достаточно большому числу сделок. Пример. Если мы десять раз подбрасываем монетку, то вполне возможна ситуация, когда мы сумеем выбросить 8 орлов. На основании этих данных теоретически можно сказать, что мы умеем выбрасывать орел в 80% процентов случаев; следовательно:

М = (0.8 × 1) – (0.2 × 1) = 0.6

1 – это выигрыш или убыток в каждой ставке из серии (100%, т.е. удвоение или полная потеря средств). Иллюстрация: имеем 10 долларов, разбиваем их по 1 $ на 10 бросков. В восьми случаях из десяти мы выиграли, ставка удвоилась — а значит, прибыль 8 × 2 = 16 долларов. Еще два броска были неудачны — по ним имеем ноль. Значит, мы заработали 16 — 10 = 6 долларов. Итого, для расчета прибыли нужно умножить депозит на величину М.

Понятно, что повторив серию хотя бы еще раз, мы вряд ли вновь выбросим 8 орлов. Однако если мы увеличим число бросков до 1000, то в этом случае число орлов будем близким к 500 — допустим, 490. Проделаем расчет снова:

М = (0.49 × 1) – (0.51 × 1) = – 0.02

Тут математическое ожидание отрицательно, т.е. указывают на потери. Но они небольшие, так как число мало отличается от нуля и при умножении на депозит оно даст маленькое произведение. Т.е. при 1000 бросках (1000 сделок на форекс) мы оказались бы примерно в нуле с небольшим убытком.

Поскольку форекс на мой взгляд более всего похож на генератор случайных чисел (подбрасывание монетки), утверждения о каком-либо стабильно высоком математическом ожидании при дневной торговле значит лишь то, что система не отработала достаточное количество времени. Очень часто для построения торговой системы берутся показатели рынка за последние несколько лет и делается расчет по ним — но рынок непостоянен и легко может выйти за установленные в системе пределы. Такие показатели, кстати, любят писать продавцы торговых роботов, которые почему-то продают «денежный станок» вместо того, чтобы самим делать на нем деньги.

Итак, рассматривая рынок форекс в рамках совершенно случайных процессов можно прийти к тому, что мат ожидание на нем при очень большом числе сделок должно быть около нуля. Однако брокер снимает за сделки комиссии, а за перенос позиций через ночь могут возникать дополнительные расходы на своп — что, в свою очередь, делает математическое ожидание отрицательным.

Рейтинг Форекс брокеров:

При этом сама жадность инвесторов в разы сокращает время жизни их счетов — используя плечи, они практически ставят весь депозит на орел или решку — и очень быстро проигрывают. С опытом большей частью счет теряется не так быстро — однако практика (глобальное международное исследование по доступным форекс-брокерам) показывает, что за три года всего лишь 0.3% (!!) трейдеров остаются в плюсе:

Но тем не менее есть возможности попробовать быть в числе этих 0.3%. На мой взгляд, наиболее эффективная состоит в том, чтобы 99% времени находится вне рынка, выбирая для входа моменты, когда сразу по ряду факторов есть высокая вероятность роста актива в выбранном направлении. Такой способ носит название трендовой торговли — и по факту очень похож на действия крайне терпеливого охотника, который месяцами выжидает самый удобный и безрисковый момент, чтобы бить практически наверняка.

В качестве примера такого удачного момента можно назвать ослабление рубля в декабре 2022 года. Но способны на такое (как по уровню знаний, так и по терпению) единичные трейдеры. Успешные торговые системы сроком в несколько лет хотя и могут существовать, однако на практике встречаются очень редко, поскольку тенденции рынка подвержены периодическим изменениям.

Мат ожидание в системе мартингейла

В данной теме будет уместно подробнее разобраться и со стратегией мартингейла, уже упомянутой в одной из предыдущих статей. Представим, что мы делаем ставку только на красное либо черное (зеро отсутствует) и в случае неудачи удваиваем ставку. Если мы повторяем серию 10 раз, то получаем 2 в степени 10 = 1024 комбинации (или ставку в десятой попытке 1024 доллара при начальной в 1 доллар).

Поражение будет лишь в случае, когда при ставке на черное 10 раз подряд выпадет красное – т.е. вероятность разорения в одной отдельно взятой серии равна 1/1024 = 0.00098 или 0.098% (почти 0.1%). Однако в среднем каждую 1024 серию 10 ставок подряд будут проигрывать. При этом в бесконечном промежутке мат ожидание от игры равно нулю:

М = (0.5 × 1) – (0.5 × 1) = 0 ,

Рейтинг Форекс платформ:

где 0.5 — вероятность выпадания красного и черного цвета, а 1 – выигрыш или убыток в каждой ставке из серии (см. выше).

В реальности же в рулетке будет время от времени выпадать зеро, делая проигрыши более частыми и превращая игру в систему с отрицательным матожиданием. Имеем: в рулетке 36 чисел плюс зеро, значит вероятность его выпадения 1/37 = 0.027 или 2.7%. Тогда вероятность черного или красного цвета равна (100 — 2.7)/2 = 48.65%.

Выводов можно сделать два: во-первых, чем дольше играешь в рулетку, тем больше вероятность остаться в проигрыше – с другой стороны при очень большом числе ставок он не будет слишком большим и составит 2.7% от депозита (для простоты не берем комиссию казино). Во-вторых, возвращаясь к предыдущему примеру видно, что увеличить вероятность выигрыша по системе мартингейл можно сокращением числа проводимых серий.

Пренебрегая выпадением зеро, вероятность выигрыша всех 10 серий (при том, что в каждой допускается 10 раз подряд увеличить ставку) составит 1 – 10/1024 ≈ 0.99 , т.е. 99%. Как видно, даже начиная с 1 доллара можно за 10 серий заработать 10 $, имея лишь 1% вероятности потерять 1024 доллара:

Расклад явно не в пользу казино, поэтому в большинстве игорных домов допускается удваивать ставку не более 7 раз подряд. На форекс при открытии центовых счетов можно дойти и до десятикратного удвоения лота, что позволяет опытным трейдерам удерживать свой счет по методу мартингейла месяцами и порой даже годами.

Тем не менее следует помнить, что чем дольше живет такой счет, тем больше у него шансов поймать свою «1024 ставку» — так что солидное время жизни не должно вызывать у вкладчиков избыточного доверия, несмотря на опыт управляющего счетом трейдера. Никогда не известно заранее, в какой именно момент рынок пойдет против прогноза трейдера на нужную для слива средств величину.

3 ловушки математического ожидания на Форексе

Математическое ожидание на Форекс – это величина эффективности торговли трейдера, которая измеряется путём сложения сумм всех прибыльных и убыточных сделок.

Математическое ожидание на Форекс активно используется успешными трейдерами, при составлении торгового плана, для игры на бирже валюты с положительным исходом.

Пример расчёта математического ожидания: 5 прибыльных сделок и 5 убыточных, при соотношении риска к прибыли 1:2. Предположим, что стоп лосс составляет 10 пунктов, а тейк профит – 20. Допустим, мы торгуем 1 лотом. Это значит, что каждая убыточная сделка будет стоить нам $100, а каждая прибыльная – $200.

Рассчитываем математическое ожидание:
(5 x (-$100)) + (5 x $200) = -500 + 1000 = $500

В примере мы совершили одинаковое количество прибыльных и убыточных сделок и получили прибыль. Поразительно, правда? 50% сделок были убыточными, но мы заработали. Почему? В чём магия? Торговый план, который основан на положительном математическом ожидании, обеспечивает весь ваш успех.

Проблема прогнозирования котировок валют

Психология игры на бирже Forex крайне негативно влияет на торговый счёт трейдера. Поэтому математическое ожидание является вашим спасательным кругом на долгосрочной дистанции.

Вы хотите торговать на валютной бирже прибыльно? – В первую очередь вы должны сохранить свои деньги. Использование математического ожидания на Форексе – это основа правильного мани менеджмента. Мани менеджмент позволит вам выжить на рынке и преуспеть в торговле валютой.

Как трейдер торгует и зарабатывает на Forex? Вы оцениваете рынок и вероятность движения цены валюты вверх или вниз, после чего производите механическое действие – открываете ордер на покупку или продажу.

Оценка рынка и расчёт вероятности производится, исходя из поведения цены валюты на графике. Ваши действия (поведение) на рынке называются торговой стратегией. Иначе говоря, вы создаёте собственные правила – триггеры. Триггеры – это ключевые точки на графике, которые служат для вас сигналом для совершения бычьей или медвежьей сделки. Котировка может двинуться в любую сторону, но вы создали жёсткие правила захода в сделку и, таким образом, увеличили вероятность получить прибыль. Что происходит дальше?

Если ваша логика сработала и рынок двинулся в вашу сторону – все отлично. Но природа рынка хаотична и цена пошла против вас. Сколько денег вы готовы потерять, прежде чем поймёте, что ошиблись с прогнозом?

Ловушки математического ожидания на Форексе

Какие математические ловушки на рынке Forex могут быть, если у вас есть торговая стратегия?

Форекс блог Forexone открывает вам 3 самые коварные ловушки математического ожидания на Форекс:

  1. Отсутствие стоп лосса.
  2. Плавающий стоп лосс (на глаз).
  3. Влияние эмоций и психологии на трейдинг.

Давайте рассмотрим детально, в чём коварность каждой ловушки. Оцените роль математического ожидания на Форексе.

Почему надо ставить стоп лосс

Среди некоторых новичков бытует мнение, что стоп лосс ставить не нужно. Зачастую это объясняется тем, что брокер (дилинговый центр) не видит, в каком месте на графике вы решили выходить из сделки, если цена пошла против вас.

Мы уже писали, что нужно выбирать брокера, который регулируется европейскими или американскими контролирующими органами. Во-вторых: за мелкими трейдерами никто не гоняется. Обычно эта параноя возникает у тех трейдером, у которых самые маленькие депозиты, они считают, что если рынок пошел против них – это брокер запустил свою руку, чтобы похитить их драгоценные $100. Увольте.

Почему надо ставить стоп лосс? Потому что это правило, ограничивающее ваш убыток. Ордер стоп лосс – это страховка для торгового счёта. Выше мы писали, что вы везде должны расставить триггеры. Исполнение стоп лосса – это триггер, который означает, что достигнут максимально возможный убыток в торговой сделке. Вы ошиблись. Признайте это и продолжайте торговлю дальше. Опыт успешных трейдеров говорит о том, что если вы получили 3 стоп лосса в день подряд – рекомендуется немедленно остановить трейдинг и заново войти в рынок следующим днем.

Опасность плавающего стоп лосса

Мы выяснили, что использовать ордер стоп лосс рекомендуется каждому трейдеру. Но какой должна быть величина данного ордера? Каждый решает для себя сам, согласно своей торговой стратегии. Существует только одно правило для всех – забудьте про плавающий стоп лосс. Почему?

Применение плавающего стоп лосса в своей торговле уничтожает положительное математическое ожидание на Форекс. Это означает, что ваш мани менеджмент будет подвергнут вашим эмоциям. Когда вы последний раз зарабатывали деньги, находясь под бурным всплеском эмоций? Наверное, это было в казино…

Вот мы подошли к самому страшному яду для своего торгового счёта – влияние эмоций и психологии на успех в торговле на бирже Forex.

Психология трейдинга и эмоции на бирже

Вы замечали за собой, что вам очень тяжело закрывать свои убыточные позиции? Знаете, почему? Потому что вы надеетесь, что рынок вот-вот развернется и котировка пойдёт в вашу сторону. Вы ни в коем случае не хотите смириться с фактом своего неправильного прогноза, до последнего удерживая свою убыточную позицию.

Существует ещё один интересный момент в трейдинге. Понаблюдайте за своими прибыльными сделками. Сколько они длились? Вы должны заметить, что прибыльные сделки длятся гораздо меньше, чем убыточные. Почему? Вы переживаете, что рынок может двинуться против вас и вы потеряете свой заработок. Банальная боязнь потерять свои деньги навевает на вас страх и вы закрываете сделку принудительно с гораздо меньшей прибылью, чем планировалось её закрыть.

Математическое ожидание на Форекс демонстрирует убыточность такого поведения трейдера. Ваши убытки гораздо выше, чем ваши прибыльные сделки – это вопрос времени, когда вы потеряете весь свой торговый депозит. Негативное математическое ожидание означает, что с каждой такой сделкой вы убиваете в себе трейдера. Вскоре вы опять начнёте просматривать сайты с вакансиями на работу.

Главное правило математического ожидания

Форекс блог Forexone рекомендует строить торговый план, используя математическое ожидание. Без положительного математического ожидания любая(!) ваша торговая стратегия будет убыточной. Что делать?

Главным правилом положительного математического ожидания на Форекс является следующее условие: быстро закрывайте убыточные сделки и давайте прибыли расти, когда сделки уходят в плюс. Не входите в позицию, если вы не уверены, что сможете обеспечить соотношение убыток-прибыль хотя бы 1:2. В долгосрочной перспективе вы оцените всю успешность данного подхода к риск менеджменту и мани менеджменту.

Исключительно все опытные трейдеры используют модели положительного математического ожидания на Форексе.

МАТЕМАТИЧЕСКОЕ ОЖИДАНИЕ ФОРЕКСА

Я люблю математику!

Цифры — упрямая вещь и с ними не поспоришь. Каждому из вас наверняка интересно будет узнать, что будет с вашим торговым счетом через месяц, два, а то и через год. Каковы перспективы стабильно делать деньги на рынке форекс? Для того, чтобы ответить на этот вопрос, достаточно посчитать математическое ожидание вашей торговой системы.

Я надеюсь, что вы, как дисциплинированный трейдер, ведете торговый журнал, в котором отражаете результаты своей торговли. В противном случае, у вас просто не будет данных, чтобы определить, на каком свете находитесь вы и ваша торговля.

Итак, как рассчитывается математическое ожидание? Оно рассчитывается по формуле:

М = (1 + средний выигрыш / средний проигрыш) * (точность системы) — 1

Сразу хочу сказать, что желательно, чтобы количество сделок за период, по которому вы считаете математическое ожидание, было больше 100. Так как, чем больше количество сделок, тем более реальным будет полученный результат, и одна последующая отрицательная или положительная позиция не сможет существенно его изменить.

Средний выигрыш представляет собой сумму выигрышных сделок (выраженную в деньгах или пунктах), деленную на количество положительных сделок. Таким образом, вы сразу видите, сколько в среднем вы зарабатываете на одной положительной сделке. Средний проигрыш – тоже самое, только для отрицательных сделок.

Точность системы подразумевает процент положительных сделок к общему количеству торговых позиций. Причем сделки, закрытые в «0», считаются так же положительными (их надо учитывать и при расчете среднего выигрыша). Например, общее количество позиций у вас 100. Из них положительных (там, где была получена прибыль или они были закрыты в 0) составляет 70. Соответственно точность системы у вас будет 70%. В формулу в таком случае вставляем значение 0,7.

Когда вы подставите свои значения в формулу математического ожидания вы получите либо положительное, либо отрицательное число. Это и будет положительное или отрицательное математическое ожидание.

Положительное математическое ожидание говорит о том, что с вашей торговлей все хорошо, и ваш депозит неукоснительно будет расти. А размер говорит о скорости прироста вашего счет. Чем это число больше, тем быстрее растет ваш депозит.

Отрицательное математическое ожидание говорит о том, что, продолжая так торговать, вы обречены к потере депозита! И это только вопрос времени.

Чтобы этого не случилось, надо менять подходы к вашей торговле и управлению капиталом. А именно, увеличивать соотношение средний выигрыш/средний проигрыш. На положительных сделках стараться зарабатывать больше, чем терять на отрицательных.

Хотя по себе знаю – терпеть прибыль тяжелее, чем терпеть убытки, всегда присутствует соблазн быстрее зафиксировать плюс.

И второе — увеличивать точность системы, т.е. количество положительных позиций. И первое, и второе легче сказать, чем сделать, но без этого стабильного прироста вашего счета просто не может быть. Вот такая упрямая вещь цифры и статистика. Лично у меня получилось небольшое, но положительное математическое ожидание (чему я искренне рад). Так что тоже есть, над чем думать и работать, как увеличить скорость прироста депозита.

Господа трейдеры! Подписались на получение анонсов внизу блога – получили полезную информацию раньше других!

С вами был Сергей Евдокименко. Отвечу на все ваши вопросы в комментариях.

Добавьте «плюс» к своей карме. Поделитесь полезной информацией с друзьями, они скажут Вам «Спасибо»

Как найти математическое ожидание?

Математическое ожидание случайной величины $X$ (обозначается $M(X)$ или реже $E(X)$) характеризует среднее значение случайной величины (дискретной или непрерывной). Мат. ожидание — это первый начальный момент заданной СВ.

Математическое ожидание относят к так называемым характеристикам положения распределения (к которым также принадлежат мода и медиана). Эта характеристика описывает некое усредненное положение случайной величины на числовой оси. Скажем, если матожидание случайной величины — срока службы лампы, равно 100 часов, то считается, что значения срока службы сосредоточены (с обеих сторон) от этого значения (с тем или иным разбросом, о котором уже говорит дисперсия).

Формула среднего случайной величины

Математическое ожидание дискретной случайной величины Х вычисляется как сумма произведений значений $x_i$ , которые принимает СВ Х, на соответствующие вероятности $p_i$: $$ M(X)=\sum_^. $$ Для непрерывной случайной величины (заданной плотностью вероятностей $f(x)$), формула вычисления математического ожидания Х выглядит следующим образом: $$ M(X)=\int_<-\infty>^ <+\infty>f(x) \cdot x dx. $$

Пример нахождения математического ожидания

Рассмотрим простые примеры, показывающие как найти M(X) по формулам, введеным выше.

Пример 1. Вычислить математическое ожидание дискретной случайной величины Х, заданной рядом: $$ x_i \quad -1 \quad 2 \quad 5 \quad 10 \quad 20 \\ p_i \quad 0.1 \quad 0.2 \quad 0.3 \quad 0.3 \quad 0.1 $$

Используем формулу для м.о. дискретной случайной величины: $$ M(X)=\sum_^. $$ Получаем: $$ M(X)=\sum_^ =-1\cdot 0.1 + 2 \cdot 0.2 +5\cdot 0.3 +10\cdot 0.3+20\cdot 0.1=6.8. $$ Вот в этом примере 2 описано также нахождение дисперсии Х.

Пример 2. Найти математическое ожидание для величины Х, распределенной непрерывно с плотностью $f(x)=12(x^2-x^3)$ при $x \in(0,1)$ и $f(x)=0$ в остальных точках.

Используем для нахождения мат. ожидания формулу: $$ M(X)=\int_<-\infty>^ <+\infty>f(x) \cdot x dx. $$ Подставляем из условия плотность вероятности и вычисляем значение интеграла: $$ M(X)=\int_<-\infty>^ <+\infty>f(x) \cdot x dx = \int_<0>^ <1>12(x^2-x^3) \cdot x dx = \int_<0>^ <1>12(x^3-x^4) dx = \\ =\left.(3x^4-\frac<12><5>x^5) \right|_0^1=3-\frac<12> <5>= \frac<3><5>=0.6. $$

Вычисление математического ожидания онлайн

Как найти математическое ожидание онлайн для произвольной дискретной случайной величины? Используйте калькулятор ниже.

  • Введите число значений случайной величины К.
  • Появится форма ввода для значений $x_i$ и соответствующих вероятностей $p_i$ (десятичные дроби вводятся с разделителем точкой, например: -10.3 или 0.5). Введите нужные значения (проверьте, что сумма вероятностей равна 1, то есть закон распределения корректный).
  • Нажмите на кнопку «Вычислить».
  • Калькулятор покажет вычисленное математическое ожидание $M(X)$.

Видео. Полезные ссылки

Видеоролики: что такое среднее (математическое ожидание)

Если вам нужно более подробное объяснение того, что такое мат.ожидание, как она вычисляется и какими свойствами обладает, рекомендую два видео (для дискретной и непрерывной случайной величины соответственно).

Полезные ссылки

Что еще может пригодиться? Например, для изучения основ теории вероятностей — онлайн учебник по терверу. Для закрепления материала — еще примеры решений по теории вероятностей.

А если у вас есть задачи, которые надо срочно сделать, а времени нет? Можете поискать готовые решения в решебнике или заказать в МатБюро:

Математическое ожидание

Математическое ожидание — это ожидаемый результат от какого-то действия.

Например, можно рассчитать ожидаемую стоимость инвестиции в определённый момент в будущем. Рассчитывая математическое ожидание перед тем, как инвестировать, можно выбрать наилучший сценарий который, по мнению инвестора, даст наилучший результат.

Случайная величина может быть двух типов:

  1. Дискретной: число возможных значений X — это числимое конечное или бесконечное множество точек; пример: количество дефектных устройств в производстве фабрики.
  2. Непрерывной: X может принимать любое значение в заданном диапазоне; пример: концентрация углекислого газа в воде.

Математическое ожидание дискретной случайной величины рассчитывается этой формулой:

Математическое ожидание дискретной случайной величины рассчитывается:
1. Сначала нужно умножить каждое из возможных результатов на свою вероятность (например: вероятность, что выпадет «1» — 1/6, «2» — 1/3, значит умножаем 1 на 1/6, 2 на 1/3, и т.д.),
2. Затем суммируем все эти значения (1 × 1/6 + 2 × 1/3 и т.д.).

Для непрерывной случайной величины используется эта формула:

В этом случае рассчитывается интеграл в заданном интервале.

Примеры вычисления математического ожидания

  • если в задаче даётся таблица с данными, то перемножаем каждое событие на его вероятность и потом всё складываем;
  • если в задаче дают функцию с заданным интервалом, то вычисляем интеграл с этим интервалом.

Пример 1

Вычислить математическое ожидание дискретной случайной величины Х со следующими данными:

xi −1 1 2 3 4
pi 0,1 0,2 0,3 0,1 0,3

Используется формула для дискретной случайной величины:

M(X) = ∑ xi×pi = −1×0,1+ 1×0,2 + 2×0,3 + 3×0,1 + 4×0,3 = −0,1 + 0,2 + 0,6 + 0,3 + 1,2 = 2,2

Пример 2

Найти математическое ожидание для величины Х, распределённой непрерывно с плотностью f(x) = 2x, при x∈(0,1) и f(x) = 0 в остальных точках.

Используется формула для непрерывной случайной величины:

Пример 3

Вычислить математическое ожидание дискретной случайной величины Х со следующими данными:

xi 1 2 3 4 5
pi 0,3 0,3 0,1 0,1 0,2

Используется формула для дискретной случайной величины:

M(X) = ∑ xi×pi = 1×0,3 + 2×0,3 + 3×0,1 + 4×0,1 + 5×0,2 = 0,3 + 0,6 + 0,3 + 0,4 + 1 = 2,6

Пример 4

Найти математическое ожидание для величины Х, распределённой непрерывно с плотностью f(x) = (1/10).(3x²+1), при x∈(0,2) и f(x) = 0 в остальных точках.

Честные Форекс брокеры этого года:
Оцените статью
Сайт любителей Форекса